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Abstract The Learning Parity with Noise problem (LPN) is appealing in cryptography as it is considered to
remain hard in the post-quantum world. It is also a good candidate for lightweight devices due to its simplicity.
In this paper we provide a comprehensive analysis of the existing LPN solving algorithms, both for the general
case and for the sparse secret scenario. In practice, the LPN-based cryptographic constructions use as a reference
the security parameters proposed by Levieil and Fouque. But, for these parameters, there remains a gap between
the theoretical analysis and the practical complexities of the algorithms we consider. The new theoretical analysis
in this paper provides tighter bounds on the complexity of LPN solving algorithms and narrows this gap between
theory and practice. We show that for a sparse secret there is another algorithm that outperforms BKW and its
variants. Following from our results, we further propose practical parameters for different security levels.

Keywords LPN · LWE · BKW ·Walsh-Hadamard transform

1 Introduction

The Learning Parity with Noise problem (LPN) is a well-known problem studied in cryptography, coding theory
and machine learning. In the LPN problem, one has access to queries of the form (v,c), where v is a random vector
and the inner product between v and a secret vector s is added to some noise to obtain c. Given these queries, one
has to recover the value of s. So, the problem asks to recover a secret vector s given access to noisy inner products
of itself with random vectors.

It is believed that LPN is resistant to quantum computers so it is a good alternative to the number-theoretic
problems (e.g. factorization and discrete logarithm) which can be solved easily with quantum algorithms. Also,
due to its simplicity, it is a nice candidate for lightweight devices. As applications where LPN or LPN variants
are deployed, we first have the HB family of authentication protocols: HB [28], HB+ [29], HB++ [11], HB# [22]
and AUTH [32]. An LPN-based authentication scheme secure against Man-in-the-Middle was presented in Crypto
2013 [37]. There are also several encryption schemes based on LPN: Alekhnovich [3] presents two public-key
schemes that encrypt one bit at a time. Later, Gilbert, Robshaw and Seurin [22] introduce LPN-C, a public-key
encryption scheme proved to be IND-CPA. Two schemes that improve upon Alekhnovich’s scheme are introduced
in [17] and [16]. In PKC 2014, Kiltz et al. [31] propose an alternative scheme to [17]. Duc and Vaudenay [19]

Supported by a grant of the Swiss National Science Foundation, 200021 143899/1.

Sonia Bogos
EPFL, CH-1015 Lausanne, Switzerland
Tel.: +41 21 69 38127
E-mail: soniamihaela.bogos@epfl.ch

Florian Tramèr
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introduce HELEN, an LPN-based public-key scheme for which they propose concrete parameters for different
security levels. A PRNG based on LPN is presented in [8] and [4].

The LPN problem can also be seen as a particular case of the LWE [40] problem where we work in Z2. While in
the case of LWE the reduction from hard lattice problems attests the hardness [40,10,39], there are no such results
in the case of LPN. The problem is believed to be hard and is closely related to the long-standing open problem of
efficiently decoding random linear codes.

In the current literature, there are few references when it comes to the analysis of LPN. The most well-known
algorithm is BKW [9]. When introducing the HB+ protocol [29], which relies on the hardness of LPN, the authors
propose parameters for different levels of security according to the BKW performance. These parameters are shown
later to be weaker than thought [35,21]. Fossorier et al. [21] provide a new variant that brings an improvement over
the BKW algorithm. Levieil and Fouque [35] also give a formal description of the BKW algorithm and introduce
two improvements over it. For their algorithm based on the fast Walsh-Hadamard transform, they provide the level
of security achieved by different instances of LPN. This analysis is referenced by most of the papers that make
use of the LPN problem. While they offer a theoretical analysis and propose secure parameters for different levels
of security, the authors do not discuss how their theoretical bounds compare to practical results. As we will see,
there is a gap between theory and practice. In the domain of machine learning, [23,42] also cryptanalyse the LPN
problem. The best algorithm for solving LPN was presented at Asiacrypt 2014 [25]. This new variant of BKW uses
covering codes as a novelty.

While these algorithms solve the general case when we have a random secret, in the literature there is no
analysis and implementation done for an algorithm specially conceived for the sparse secret case, i.e. the secret has
a small Hamming weight.

The BKW algorithm can also be adapted to solve the LWE problem in exponential time. Implementation re-
sults and improvements of it were presented in [1,2,18]. In terms of variants of LPN, we have Ring-LPN [26]
and Subspace LPN [32]. As an application for Ring-LPN we have the Lapin authentication protocol [26] and its
cryptanalysis in [6,24].

Motivation & Contribution. Our paper comes to address exactly the aforementioned open problems, i.e. the gap
between theory and practice and the analysis of an LPN solving algorithm that proves to be better than BKW
and its variants in the case of a sparse secret. First, we present the current existing LPN solving algorithms in a
unified framework. For these algorithms, we provide experimental results and give a better theoretical analysis
that brings an improvement over the work of Levieil and Fouque [35]. Furthermore, we implement and analyse
three new algorithms for the case where the secret is sparse. Our results show that for a sparse secret the BKW
family of algorithms is outperformed by an algorithm that uses Gaussian elimination. Our motivation is to provide
a theoretical analysis that matches the experimental results. Although this does not prove that LPN is hard, it gives
tighter bounds for the parameters used by the aforementioned cryptographic schemes. It can also be used to have
a tighter complexity analysis of algorithms related to LPN solving. Our results were actually used in [25] and also
for LWE solving in [18].

Organization. In Section 2 we introduce the definition of LPN and present the main LPN solving algorithms. We
also present the main ideas of how the analysis was conducted in [35]. We introduce novel theoretical analyses and
show what improvements we bring in Section 3. Besides analysing the current existing algorithms, we propose
three new algorithms and analyse their performance in Section 4. In Section 5, we provide the experimental results
for the algorithms described in Section 3 & 4. We compare the theory with the practical results and show the
tightness of our query complexity. We provide a comparison between all these algorithms in Section 6 and propose
practical parameters for a 80 bit security level.

Notations and Preliminaries. Let 〈·, ·〉 denote the inner product, Z2 = {0,1} and ⊕ denote the bitwise XOR. For
a domain D , we denote by x U←− D the fact that x is drawn uniformly at random from D . We use small letters for
vectors and capital letters for matrices. We represent a vector v of size k as v = (v1, . . . ,vk), where vi is the ith bit
of v. We denote the Hamming weight of a vector v by HW (v). By Berτ we define the Bernoulli distribution with
parameter τ, i.e. for a random variable X , Pr[X = 1] = τ = 1−Pr[X = 0]. The bias of a boolean random variable X
is defined as δ = E((−1)X ). Thus, for a Bernoulli variable we have δ = 1−2τ.
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2 LPN

In this section we introduce the LPN problem and the algorithms that solve it. For ease of understanding, we
present the LPN solving algorithms in a unified framework.

2.1 The LPN Problem

Intuitively, the LPN problem asks to recover a secret vector s given access to noisy inner products of itself and
random vectors. More formally, we present below the definition of the LPN problem.

Definition 1 (LPN oracle) Let s U←− Zk
2 and let τ ∈]0, 1

2 [ be a constant noise parameter. Denote by Ds,τ the distri-
bution defined as

{(v,c) | v U←− Zk
2,c = 〈v,s〉⊕d,d← Berτ} ∈ Zk+1

2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples according to Ds,τ.

Definition 2 (Search LPN problem) Given access to an LPN oracle OLPN
s,τ , find the vector s. We denote by LPNk,τ

the LPN instance where the secret has size k and the noise parameter is τ. Let k′ ≤ k. We say that an algorithm M
(n, t,m,θ,k′)-solves the search LPNk,τ problem if

Pr[M OLPN
s,τ (1k) = (s1 . . .sk′) | s

U←− Zk
2]≥ θ,

and M runs in time t, uses memory m and asks at most n queries from the LPN oracle.

Note that we consider here the problem of recovering the first k′ bits of the secret. We will show in Section 3
that for all the algorithms we consider, the cost of recovering the full secret s is dominated by the cost of recovering
the first block of k′ bits of s.

An equivalent way to formulate the search LPNk,τ problem is as follows: given access to a random matrix
A ∈ Zn×k

2 and a column vector c over Z2, such that AsT ⊕d = c, find the vector s. Here the matrix A corresponds to
the matrix that has the vectors v on its rows, s is the secret vector of size k and c corresponds to the column vector
that contains the noisy inner products. The column vector d is of size n and contains the corresponding noise bits.

One may observe that with τ = 0, the problem is solved in polynomial time through Gaussian elimination given
n = Θ(k) queries. The problem becomes hard once noise is added to the inner product. The value of τ can be either
independent or dependent of the value k. Usually the value of τ is constant and independent from the value of k. A
case where τ is taken as a function of k occurs in the construction of the encryption schemes [3,16]. Intuitively, a
larger value of τ means more noise and makes the problem of search LPN harder. The value of the noise parameter
is a trade-off between the hardness of the LPNk,τ and the practical impact on the applications that rely on this
problem.

The LPN problem has also a decisional form. The decisional LPNk,τ asks to distinguish between the uniform
distribution over Zk+1

2 and the distribution Ds,τ. A similar definition for an algorithm that solves decisional LPN
can be adopted as above. Let Uk+1 denote an oracle that outputs random vectors of size k + 1. We say that an
algorithm M (n, t,m,θ)-solves the decisional LPNk,τ problem if

| Pr[M OLPN
s,τ (1k) = 1]−Pr[M Uk+1(1k) = 1] |≥ θ

and M runs in time t, uses memory m and needs at most n queries.
Search and decisional LPN are polynomially equivalent. The following lemma expresses this result.

Lemma 1 ([30,8]) If there is an algorithm M that (n, t,m,θ)-solves the decisional LPNk,τ, then one can build
an algorithm M ′ that (n′, t ′,m′,θ′,k)-solves the search LPNk,τ problem, where n′ = O(n ·θ−2 logk), t ′ = O(t · k ·
θ−2 logk), m′ = O(m ·θ−2 logk)) and θ′ = θ

4 .

We do not go into details as this is outside the scope of this paper. We only analyse the solving algorithms for
search LPN. From now on we will refer to it simply as LPN.



4 Sonia Bogos et al.

2.2 LPN Solving Algorithms

In the current literature there are several algorithms to solve the LPN problem. The first that appeared, and the most

well known, is BKW [9]. This algorithm recovers the secret s of an LPNk,τ instance in sub-exponential 2O( k
logk )

time complexity by requiring a sub-exponential number 2O( k
logk ) of queries from the OLPN

s,τ oracle. Levieil and
Fouque [35] propose two new improvements which are called LF1 and LF2. Fossorier et. al [21] also introduce
a new algorithm, which we denote FMICM, that brings an improvement over BKW. The best algorithm to solve
LPN was recently presented at Asiacrypt 2014 [25]. It can be seen as a variant of LF1 where covering codes are
introduced as a new method to improve the overall algorithm. All these algorithms still require a sub-exponential
number of queries and have a sub-exponential time complexity.

Using BKW as a black-box, Lyubashevsky [36] introduces a ”pre-processing” phase and solves an LPNk,τ

instance with k1+η queries and with a time complexity of 2O( k
log logk ). The queries given to BKW have a worse

bias of τ′ = 1
2 −

1
2

( 1−2τ

4

) 2k
η logk . Thus, this variant requires a polynomial number of queries but has a worse time

complexity. Given only n = Θ(k) queries, the best algorithms run in exponential time 2Θ(k) [38,41].
An easy to solve instance of LPN was introduced by Arora and Ge [5]. They show that in the k-wise version

where the k-tuples of the noise bits can be expressed as the solution of a polynomial (e.g. there are no 5 consecutive
errors in the sequence of queries), the problem can be solved in polynomial time. What makes the problem easy is
the fact that an adversary is able to structure the noise.

In this paper we are interested in the BKW algorithm and its improvements presented by Levieil and Fouque [35]
and by Guo et al. [25]. The common structure of all these algorithms is the following: given n queries from the
OLPN

s,τ oracle, the algorithm tries to reduce the problem of finding a secret s of k bits to one where the secret s′ has
only k′ bits, with k′ < k. This is done by applying several reduction techniques. We call this phase the reduction
phase. Afterwards, during the solving phase we can apply a solving algorithm that recovers the secret s′. We then
update the queries with the recovered bits and restart to fully recover s. For the ease of understanding, we describe
all the aforementioned LPN solving algorithms in this setting where we separate the algorithms in two phases. We
emphasize the main differences between the algorithms and discuss which improvements they bring.

First, we assume that k = a ·b. Thus, we can visualise the k-bit length vectors v as a blocks of b bits.

2.2.1 BKW∗ Algorithm

The BKW∗ algorithm as described in [35] works in two phases:

Reduction phase. Given n queries from the LPN oracle, we group them in equivalence classes. Two queries are in
the same equivalence class if they have the same value on a set q1 of b bit positions. These b positions are chosen
arbitrarily in {1, . . . ,k}. There are at most 2b such equivalence classes. Once this separation is done, we perform
the following steps for each equivalence class: pick one query at random, the representative vector, and xor it to
the rest of the queries from the same equivalence class. Discard the representative vector. This will give vectors
with all bits set to 0 on those b positions. These steps are also illustrated in Algorithm 1 (steps 5 - 10). We are left
with at least n− 2b queries where the secret is reduced to k− b effective bits (others being multiplied by 0 in all
queries).

We can repeat the reduction technique a−1 times on other disjoint position sets q2, . . . ,qa−1 from {1, . . . ,k}\q1
and end up with at least n− (a−1)2b queries where the secret is reduced to k− (a−1)b = b bits. The bias of the
new queries is δ2a−1

, as shown by the following Lemma with w = 2a−1.

Lemma 2 ([35,9]) If (v1,c1), . . . ,(vw,cw) are the results of w queries from ALPN
s,p , then the probability that:

〈v1⊕ v2⊕ . . .⊕ vw,s〉= c1⊕ . . .⊕ cw

is equal to 1+δw

2 .

It is easy so see that the complexity of performing this reduction step is O(kan).

After a− 1 iterations, we are left with at least n− (a− 1)2b queries, and a secret of size of b effective bits at
positions 1, . . . ,b. The goal is to keep only those queries that have Hamming weight one (step 11 of Algorithm 1).
Given n− (a−1)2b queries and one bit position j ∈ {1, . . . ,k}\{q1∪ . . .∪qa−1}, only n′ = n−(a−1)2b

2b will have a



On Solving LPN using BKW and Variants 5

Algorithm 1 BKW∗ Algorithm by [35]

1: Input: a set V of n queries (vi,ci) ∈ {0,1}k+1 from the LPN oracle, values a, b such that k = ab and n≥ a2b

2: Output: values s1, . . . ,sb

3: Partition the positions {1, . . . ,k}\{1, . . . ,b} into disjoint q1 ∪ . . .∪qa−1 with qi of size b
4: for i = 1 to a−1 do . Reduction phase
5: Partition V =V1 ∪ . . .∪V2b s.t. vectors in Vj have the the same bit values at positions in qi
6: foreach Vj
7: Choose a random (v∗,c∗) ∈Vj as a representative vector
8: Replace each (v,c) by (v,c)⊕ (v∗,c∗), (v,c) ∈Vj for (v,c) 6= (v∗,c∗)
9: Discard (v∗,c∗) from Vj

10: V =V1 ∪ . . .∪V2b

11: Discard from V all queries (v,c) such that HW (v) 6= 1
12: Partition V =V1 ∪ . . .∪Vb s.t. vectors in Vj have a bit 1 on position j
13: foreach position i . Solving phase
14: si =majority(c), for all (v,c) ∈Vi

15: return s1, . . . ,sb

single non-zero bit on position j and 0 on all the others. These queries represent the input to the solving phase.
The bias does not change since we do not alter the original queries. The complexity for performing this step for
n− (a−1)2b queries is O(b(n− (a−1)2b)) as the algorithm just checks if the queries have Hamming weight 1.

The bit c is part of the query also: it gets updated during the xoring operations but we do not consider this bit
in partitioning or when computing the Hamming weight of a query. Later on, the information stored in this bit will
be used to recover bits of the secret.

Remark 1 Given that we have performed the xor between pairs of queries, we note that the noise bits are no longer
independent. In the analysis of BKW∗, this was overlooked by Levieil and Fouque [35].1 The original BKW [9]
algorithm overcomes this problem in the following manner: each query that has Hamming weight 1 is obtained
with a fresh set of queries. Given a2b queries the algorithm runs the xoring process and is left with 2b vectors.
From these 2b queries, with a probability of 1− (1−2−b)2b ≈ 1− 1

e , where e = 2.718, there is one with Hamming
weight 1 on a given position i. In order to obtain more such queries the algorithm repeats this process with fresh
queries. This means that for guessing 1 bit of the secret, the original algorithm requires n = a ·2b · 1

1−1/e ·n
′ queries,

where n′ denotes the number of queries needed for the solving phase. This is larger than n = 2bn′+ (a− 1)2b

which is the number of queries given by Levieil and Fouque [35]. We implemented and run BKW∗ as described
in Algorithm 1 and we discovered that this dependency does not affect the performance of the algorithm. I.e.,
the number of queries computed by the theory that ignores the dependency of the error bits matches the practical
results. We need n = n′+(a− 1)2b (and not n = 2bn′+(a− 1)2b) queries in order to recover one block of the
secret. The theoretical and practical results are presented in Section 5. Given our practical experiments, we keep
the “heuristic” assumption of independence and the algorithm as described in [35] which we called BKW∗. Thus,
we assume from now on the independence of the noise bits and the independence of the queries.

Another discussion on the independence of the noise bits is presented in [20]. There we can see what is the
probability to have a collision, i.e. two queries that share an error bit, among the queries formed during the xoring
steps.

We can repeat the algorithm a times, with the same queries, to recover all the k bits. The total time complexity
for the reduction phase is O(ka2n) as we perform the steps described above a times (instead of O(kan) as given
in [35]). However, by making the selection of a and b adaptive with ab near to the remaining number of bits to
recover, we can show that the total complexity is dominated by the one of recovering the first block. So, we can
typically concentrate on the algorithm to recover a single block. We provide a more complete analysis in Section 3.

Solving phase. The BKW solving method recovers the 1-bit secret by applying the majority rule. The queries from
the reduction phase are of the form c′j = si⊕d′j, d′j ← Ber

(1−δ2a−1
)/2 and si being the ith bit of the secret s. Given

that the probability for the noise bit to be set to 1 is smaller than 1
2 , in more than half of the cases, these queries will

be si. Thus, we decide that the value of si is given by the majority rule (steps 12-14 of Algorithm 1). By applying
the Chernoff bounds [14], we find how many queries are needed such that the probability of guessing incorrectly
one bit of the secret is bounded by some constant θ, with 0 < θ < 1.

1 Definition 2 of [35] assumes independence of samples but Lemma 2 of [35] shows the reduction without proving independence.
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The time complexity of performing the majority rule is linear in the number of queries.

Complexity analysis. With their analysis, Levieil and Fouque [35] obtain the following result:

Theorem 1 (Th. 1 from [35]) For k = a · b, the BKW∗ algorithm heuristically (n = 20 · ln(4k) · 2b · δ−2a
+(a−

1)2b, t = O(kan),m = kn,θ = 1
2 ,b)-solves the LPN problem.2

In Section 3 we will see that our theoretical analysis, which we believe to be more intuitive and simpler, gives
tighter bounds for the number of queries.

2.2.2 LF1 Algorithm

During the solving phase, the BKW algorithm recovers the value of the secret bit by bit. Given that we are interested
only in queries with Hamming weight 1, many queries are discarded at the end of the reduction phase. As first noted
in [35], this can be improved by using a Walsh-Hadamard transform instead of the majority rule. This improvement
of BKW is denoted in [35] by LF1. Again, we present the algorithm in pseudo-code in Algorithm 2. As in BKW∗,
we can concentrate on the complexity to recover the first block.

Reduction phase. The reduction phase for LF1 follows the same steps as in BKW∗ in obtaining new queries as
2a−1 xors of initial queries in order to reduce the secret to size b. At this step, the algorithm does not discard
queries anymore but proceeds directly with the solving phase (see steps 3-10 of Algorithm 2). We now have
n′ = n− (a−1)2b queries after this phase.

Solving phase. The solving phase consists in applying a Walsh-Hadamard transform in order to recover b bits of
the secret at once (steps 11-13 in Algorithm 2). We can recover the b-bit secret by computing the Walsh-Hadamard
transform of the function f (x) = ∑i 1v′i=x(−1)c′i . The Walsh-Hadamard transform is f̂ (ν) = ∑x(−1)〈ν,x〉 f (x) =

∑x(−1)〈ν,x〉∑i 1v′i=x(−1)c′i = ∑i(−1)〈v
′
i,ν〉+c′i = n′− 2HW (A′νT + c′). For ν = s, we have f̂ (s) = n′− 2 ·HW (d′),

where d′ represents the noise vector after the reduction phase. We know that most of the noise bits are set to 0.
So, f̂ (s) is large and we suppose it is the largest value in the table of f̂ . Thus, we have to look at the maximum
value of the Walsh-Hadamard transform in order to recover the value of s. A naive implementation of a Walsh-
Hadamard transform would give a complexity of 22b since we apply it on a space of size 2b. Since we apply a fast
Walsh-Hadamard transform, we get a time complexity of b2b [15].

Algorithm 2 LF1 Algorithm

1: Input: a set V of n queries (vi,ci) ∈ {0,1}k+1 from the LPN oracle, values a, b such that k = ab
2: Output: values s1, . . . ,sb

3: Partition the positions {1, . . . ,k}\{1, . . . ,b} into disjoint q1 ∪ . . .∪qa−1 with qi of size b
4: for i = 1 to a−1 do . Reduction phase
5: Partition V =V1 ∪ . . .∪V2b s.t. vectors in Vj have the the same bit values at positions in qi
6: foreach Vj
7: Choose a random (v∗,c∗) ∈Vj as a representative vector
8: Replace each (v,c) by (v,c)⊕ (v∗,c∗), (v,c) ∈Vj for (v,c) 6= (v∗,c∗)
9: Discard (v∗,c∗) from Vj

10: V =V1 ∪ . . .∪V2b

11: f (x) = ∑(v,c)∈V 1v1,...,b=x(−1)c . Solving phase
12: f̂ (ν) = ∑x(−1)〈ν,x〉 f (x) . Walsh transform of f (x)
13: (s1, . . . ,sb) = arg max( f̂ (ν))
14: return s1, . . . ,sb

2 The term (a− 1)2b is not included in Theorem 1 from [35]. This factor represents the number of queries lost during the reduction phase
and it is the dominant one for all the algorithms except BKW∗.
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Complexity analysis. The following theorem states the complexity of LF1:

Theorem 2 (Th. 2 from [35]) For k = a ·b and a > 1, the LF1 algorithm heuristically (n = (8b+200)δ−2a
+(a−

1)2b, t = O(kan+b2b),m = kn+b2b,θ = 1
2 ,b)-solves the LPN problem.3

The analysis is similar to the one done for BKW∗, except that we now work with blocks of the secret s and not
bits. Thus, we bound by 1

2a the probability that f̂ (s′)> f̂ (s), where s′ is any of the 2b−1 values different from s.
As for BKW∗, we will provide a more intuitive and tighter analysis for LF1 in Section 3.2.

BKW∗ vs. LF1. We can see that compared to BKW∗, LF1 brings a significant improvement in the number of
queries needed. As expected, the factor 2b disappeared as we did not discard any query at the end of the reduction
phase. There is an increase in the time and memory complexity because of the fast Walsh-Hadamard transform,
but these terms are not the dominant ones.

2.2.3 LF2 Algorithm

LF2 is a heuristic algorithm, also introduced in [35], that applies the same Walsh-Hadamard transform as LF1, but
has a different reduction phase. We provide the pseudocode for LF2 below.

Algorithm 3 LF2 Algorithm

1: Input: a set V of n queries (vi,ci) ∈ {0,1}k+1 from the LPN oracle, values a, b such that k = ab
2: Output: values s1, . . . ,sb

3: Partition the positions {1, . . . ,k}\{1, . . . ,b} into disjoint q1 ∪ . . .∪qa−1 with qi of size b
4: for i = 1 to a−1 do . Reduction phase
5: Partition V =V1 ∪ . . .∪V2b s.t. vectors in Vj have the the same bit values at positions in qi
6: foreach Vj
7: V ′j = /0

8: foreach pair (v,c),(v′,c′) ∈Vj , (v,c) 6= (v′,c′)
9: V ′i =V ′i ∪ (v⊕ v′,c⊕ c′)

10: V =V ′1 ∪ . . .∪V ′2b

11: f (x) = ∑(v,c)∈V 1v1,...,b=x(−1)c . Solving phase
12: f̂ (ν) = ∑x(−1)〈ν,x〉 f (x) . compute the Walsh transform of f (x)
13: (s1, . . . ,sb) = arg max( f̂ (ν))
14: return s1, . . . ,sb

Reduction phase. Similarly to BKW∗ and LF1, the n queries are grouped into equivalence classes. Two queries
are in the same equivalence class if they have the same value on a window of b bits. In each equivalence class we
perform the xor of all the pairs from that class. Thus, we do not choose any representative vector that is discarded
afterwards. Given that in an equivalence class there are n/2b queries, we expect to have 2b

(n/2b

2

)
queries at the end

of the xor-ing. One interesting case is when n is of the form n = 3 · 2b as with this reduction phase we expect to
preserve the number of queries since

(3
2

)
= 3. For any n > 3 · 2b, the number of queries will grow exponentially

and will also affect the time and memory complexity.

Solving phase. This works like in LF1.
In a scenario where the attacker has access to a restricted number of queries, this heuristic algorithm helps in

increasing the number of queries. With LF2, the attacker might produce enough queries to recover the secret s.

2.2.4 FMICM Algorithm

Another algorithm by Fossorier et al. [21] uses ideas from fast correlation attacks to solve the LPN problem. While
there is an improvement compared with the BKW∗ algorithm, this algorithm does not perform better than LF1 and
LF2. Given that it does not bring better results, we just present the main steps of the algorithm.

3 The term b2b in the time complexity is missing in [35]. While in general kan is the dominant term, in the special case where a = 1 (thus
we apply no reduction step) a complexity of O(kan) would be wrong since, in this case, we apply the Walsh-Hadamard transform on the whole
secret and the term k2k dominates the final complexity.
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As the previous algorithms, it can be split into two phases: reduction and solving phase. The reduction phase
first decimates the number of queries and keeps only those queries that have 0 bits on a window of a given size.
Then, it performs xors of several queries in order to further reduce the size of the secret. The algorithm that is used
for this step is similar to the one that constructs parity checks of a given weight in correlation attacks. The solving
phase makes use of the fast Walsh-Hadamard transform to recover part of the secret. By iteration the whole secret
is recovered.

2.2.5 Covering Codes Algorithm

The new algorithm [25] that was presented at Asiacrypt 2014, introduces a new type of reduction. There is a
difference between [25] and what was presented at the Asiacrypt conference (mostly due to our results). We
concentrate here on [25] and in the next section we present the suggestions we provided to the authors.

Reduction phase. The first step of this algorithm is to transform the LPN instance where the secret s is randomly
chosen to an instance where the secret has now a Bernoulli distribution. This method was described in [33,4,6].

Given n queries from the LPN oracle: (v̄1,c1), (v̄2,c2), . . . ,(v̄n,cn), select k linearly independent vectors v̄i1 , . . . , v̄ik .
Construct the k×k target matrix M that has on its columns the aforementioned vectors, i.e. M = [v̄T

i1 v̄T
i2 . . . v̄

T
ik ]. Com-

pute (MT )−1 the inverse of MT , where MT is the transpose of M. We can rewrite the k queries corresponding to the
selected vectors as MT sT +d′, where d′ is the k-bit column vector d =(di1 ,di2 , . . . ,dik)

T . We denote c′=MT sT +d′.
For any v̄ j that is not used in matrix M do the following computation:

v̄ j(MT )−1c′+ c j = 〈v̄ j(MT )−1,d′〉+d j.

We discard the matrix M. From the initial set of queries, we have obtained a new set where the secret value
is d′. This can be seen as a reduction to a sparse secret. The complexity of this transform is O(k3 + nk2) by the
schoolbook matrix inversion algorithm. This can be improved as follows: for a fixed χ, one can split the matrix

(MT )−1 in a′ = d k
χ
e parts


M1
M2
. . .
Ma′

 of χ rows. By pre-computing v̄Mi for all v̄ ∈ {0,1}χ, the operation of performing

v̄ j(MT )−1 takes O(ka′). The pre-computation takes O(2χ) and is negligible if the memory required by the BKW
reduction is bigger. With this pre-computation the complexity is O(nka′).

Afterwards the algorithm follows the usual BKW reduction steps where the size of the secret is reduced to k′

by the xoring operation. Again the vector of k bits is seen as being split into blocks of size b. The BKW reduction
is applied a times. Thus, we have k′ = k−ab.

The secret s of k′ bits is split into 2 parts: one part denoted s2 of k′′ bits and the other part, denoted s1, of
k′ − k′′ bits. The next step in the reduction is to guess value of s1 by making an assumption on its Hamming
weight: HW (s1) ≤ w0. The remaining queries are of the form (vi,ci = 〈vi,s2〉⊕ di), where vi,s2 ∈ {0,1}k′′ and
di ∈ Ber 1−δ2a

2
. Thus, the problem is reduced to a secret of k′′ bits.

At this moment, the algorithm approximates the vi vectors to the nearest codeword gi in a [k′′, `] linear code
where k′′ is the size and ` is the dimension. By observing that gi can be written as gi = g′iG, where G is the
generating matrix of the code, we can write the equations in the form

ci = 〈vi,s2〉⊕di = 〈g′iG,s2〉⊕〈vi−gi,s2〉⊕di = 〈g′i,s′2〉⊕d′i

with s′2 = s2GT and d′i = 〈vi− gi,s2〉⊕ di, where g′i,s
′
2 have length `. If the code has optimal covering radius ρ,

vi−gi is a random vector of weight bounded by ρ, while s2 is a vector of some small weight bounded by w1, with
some probability. So, 〈vi−gi,s2〉 is biased and we can treat d′i in place of di.

In [25], the authors approximate the bias of 〈vi−gi,s2〉 to δ′ =
(
1−2 ρ

k′′
)w1 , as if all bits were independent. As

discussed in the next section, this approximation is far from good.
No queries are lost during this covering code operation and now the secret is reduced to ` bits. We now have

n′ = n− k−a2b queries after this phase.

Solving phase. The solving phase of this algorithm follows the same steps as LF1, i.e. it employs a fast Walsh-
Hadamard transform. One should notice that the solving phase recovers ` relations between the bits of the secret
and not actual ` bits of the secret.
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Complexity analysis. Recall that in the algorithm two assumptions are made regarding the Hamming weight of the
secret: that s2 has a Hamming weight smaller than w1 and that s1 has a Hamming weight smaller than w0. This
holds with probability Pr(w0,k′− k′′) ·Pr(w1,k′′) where

Pr(w,m) =
w

∑
i=0

(1− τ)m−i
τ

i
(

m
i

)
.

The total complexity is given by the complexity of one iteration to which we add the number of times we have
to repeat the iteration. We state below the result from [25]:

Theorem 3 (Th 1. from [25])
Let n be the number of samples required and a,a′,b,w0,w1, `,k′,k′′ be the algorithm parameters. For the LPNk,τ

instance, the number of bit operations required for a successful run of the new attack is equal to

t =
tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0,k′− k′′)Pr(w1,k′′)
,

where

– tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret
– tbkw reduction = (k+1)an is the cost of the BKW reduction steps
– tguess = n′∑w0

i=0

(k′−k′′
i

)
i is the cost of guessing k′−k′′ bits and n′ = n−k−a2b represents the number of queries

at the end of the reduction phase
– tcovering code = (k′′−`)(2n′+2`) is the cost of the covering code reduction and n′ is again the number of queries
– tWalsh transform = `2` ∑

w0
i=0

(k′−k′′
i

)
is the cost of applying the fast Walsh-Hadamard transform for every guess of

k′− k′′ bits

under the condition that n−a2b > 1
δ2a+1 ·δ′2

, where δ = 1−2τ and δ′ =
(
1−2 ρ

k′′
)w1 and ρ is the smallest integer,

s.t. ∑
ρ

i=0

(k′′
i

)
> 2k′′−`.

The condition n−a2b > 1
δ2a+1 ·δ′2

proposed in [25] imposes a lower bound on the number of queries needed in
the solving phase for the fast Walsh-Hadamard transform. In our analysis, we will see that this is underestimated:
the Chernoff bounds dictate a larger number of queries.

3 Tighter Theoretical Analysis

In this section we present a different theoretical analysis from the one of Levieil and Fouque [35] for the solving
phases of the LPN solving algorithms. A complete comparison is given in Section 5. Our analysis gives tighter
bounds and aims at closing the gap between theory and practice. For the new algorithm from [25], we present the
main points that we found to be incomplete.

We first show how the cost of solving one block of the secret dominates the total cost of recovering s. The main
intuition is that after recovering a first block of k′ secret bits, we can apply a simple back substitution mechanism
and consider solving a LPNk−k′,τ problem. The same strategy is applied by [1,18] when solving LWE. Note that
this is simply a generalisation of the classic Gaussian elimination procedure for solving linear systems, where we
work over blocks of bits.

Specifically, let k1 = k and ki = ki−1−k′i−1 for i> 1 and k′i−1 < ki−1. Now, suppose we were able to (ni, ti,mi,θi,k′i)-
solve an LPNki,τ instance (meaning we recover a block of size k′i from the secret of size ki with probability θi, in
time ti and with memory mi). One can see that for ki+1 < ki we need less queries to solve the new instance (the
number of queries is dependent on the size ki+1 and on the noise level). With a smaller secret, the time com-
plexity will decrease. Having a shorter secret and less queries, the memory needed is also smaller. Then, we
can (n, t,m,θ,k)-solve the problem LPNk,τ (i.e recover s completely), with n = max(n1,n2, . . .), θ = θ1 +θ2 + . . .,
t = t1+k′1n1+ t2+k′2n2 . . . (the terms k′ini are due to query updates by back substitution) and m = max(m1,m2, . . .).
Finally, by taking θi = 3−i, we obtain θ≤ 1

2 and thus recover the full secret s with probability over 50%.
It is easily verified that for all the algorithms we consider, we have n = n1, m = m1, and t is dominated by t1.

We provide an example on a concrete LPN instance in Appendix B.

For all the solving algorithms presented in this section we assume that n′ queries remain after the reduction
phase and that the bias is δ′. For the solving techniques that recover the secret block-by-block, we assume the block
size to be k′.
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Table 1: BKW∗ query complexity - our theory

τ
k

32 48 64 80 100

0.01 10.97 12.82 15.93 18.66 21.74

0.10 15.84 20.01 24.12 28.20 33.28

0.20 19.71 24.85 30.97 34.83 39.90

0.25 21.81 26.95 33.07 38.14 44.11

0.40 28.24 36.38 43.64 48.71 55.78

Table 2: BKW∗ query complexity - theory [35]

τ
k

32 48 64 80 100

0.01 14.56 16.60 19.68 22.59 25.64

0.10 19.75 23.87 27.95 32.00 37.06

0.20 23.50 28.61 34.69 38.64 43.70

0.25 25.60 30.72 36.79 41.85 47.90

0.40 31.89 40.00 47.37 52.43 59.48

3.1 BKW∗ Algorithm

Given an LPN instance, the BKW∗ solving method recovers the 1 bit secret by applying the majority rule. Recall
that the queries are of the form c′j = si⊕ d′j, d′j ← Ber(1−δ′)/2. The majority of these queries will most likely be
c′j = si. It is intuitive to see that the majority rule fails when more than half of the noise bits are 1 for a given
bit. Any wrong guess of a bit gives a wrong value of the k-bit secret s. In order to bound the probability of such
a scenario, we use the Hoeffding bounds [27] with X j = d j (See Appendix A). We have Pr[X j = 1] = 1−δ′

2 . For

X = ∑
n′
j=1 X j, we have E(X) = (1−δ′)n′

2 and we apply Theorem 12 with λ = δn′
2 , α j = 0 and β j = 1 and we obtain

Pr[incorrect guess on si] = Pr
[

X ≥ n′

2

]
≤ e−

n′δ′2
2 .

As discussed in Remark 1, the assumption of independence is heuristic.
Using the above results for every bit 1, . . . ,b, we can bound by a constant θ, the probability that we guess

incorrectly a block of s, with 0 < θ < 1. Using the union bound, we get that n′ = 2δ′−2 ln( b
θ
). Given that n′ =

n−(a−1)2b

2b and that δ′ = δ2a−1
, we obtain the following result.

Theorem 4 For k ≤ a ·b, the BKW∗ algorithm heuristically (n = 2b+1δ−2a
ln( b

θ
)+(a−1)2b, t = O(kan),

m = kn,θ,b)-solves the LPN problem.

We note that we obtained the above result using the union bound. One could make use of the independence of
the noise bits and obtain n = 2b+1δ−2a

ln
(

1
1−2−1/k

)
+(a−1)2b, but this would bring a very small improvement.

In terms of query complexity, we compare our theoretical results with the ones from [35] in Table 1 and Table 2.
We provide the log2(n) values for k varying from 32 to 100 and we take different Bernoulli noise parameters that
vary from 0.01 to 0.4. Overall, our theoretical results bring an improvement of a factor 10 over the results of [35].

In Section 5.1 we show that Theorem 4 gives results that are very close to the ones we measure experimentally.
We note that our BKW∗ algorithm, for which we have stated the above theorem, follows the steps from Algo-

rithm 1 for k = a · b. For k < a · b the algorithm is a bit different. In this case we have a− 1 blocks of size b and
an incomplete block of size smaller than b. During the reduction phase, we first partition the incomplete block and
then apply (a−2) reduction steps for the complete blocks. We finally have b bits to recover. Other than this small
change, the algorithm remains the same.

If the term 2b+1δ−2a
ln( b

θi
) dominates n, the next iteration can use a decreased by 1 leading to a new n ≈

2b+1δ−2a−1
ln( b

θi+1
) which is roughly the square root of the previous n. So, the complexity of recovering this block

is clearly dominated by the cost of recovering the previous block. If the term (a− 1)2b is dominating, we can
decrease b by one in the next block and reach the same conclusion.

3.2 LF1 Algorithm

For the LF1 algorithm, the secret is recovered by choosing the highest value of a Walsh-Hadamard transform.
Recall that the Walsh transform is f̂ (ν) = n′−2HW (A′νT +c′). For ν = s, we obtain that the Walsh transform has
the value f̂ (s) = n′−2HW (d′). We have E( f̂ (s)) = n′δ′.



On Solving LPN using BKW and Variants 11

The failure probability for LF1 is bounded by the probability that there is another vector ν 6= s such that
HW (A′νT + c′) ≤ HW (A′sT + c′). Recall that A′sT + c′ = d′. We define x = s+ ν so that A′νT + c′ = A′xT + d′.
We obtain that the failure probability is bounded by 2k′ times the probability that HW (A′xT + d′) ≤ HW (d′), for
a fixed k′-bit non-zero vector x. As A′ is uniformly distributed, independent from d′, and x is fixed and non-zero,
A′xT +d′ is uniformly distributed, so we can rewrite the inequality as HW (y)≤ HW (d′), for a random y.

To bound the failure probability, we again use the Hoeffding inequality [27]. Let X1,X2, . . . , Xn′ be random
independent variables with X j = y j−d′j, Pr(X j ∈ [−1,1]) = 1. We have E(y j−d′j)=

δ′
2 . We can take λ=E[X ] = δ′n′

2
in Theorem 12 and obtain:

Pr[incorrect guess on one block]≤ 2k′ Pr

[
n′

∑
j=1

(y j−d′j)≤ 0

]
≤ 2k′e−

n′δ′2
8 .

Again we can bound the probability of incorrectly guessing one block of s by θ. With n′ = 8(ln 2k′

θ
)δ′−2,

the probability of failure is smaller than θ. The total number of queries will be n = n′+(a− 1)2b and we have
δ′ = δ2a−1

, k′ = b. Similar to BKW, we obtain the following theorem:

Theorem 5 For k ≤ a · b, the LF1 algorithm heuristically (n = 8ln( 2b

θ
)δ−2a

+(a− 1)2b, t = O(kan+ b2b),m =

kn+b2b,θ,b)-solves the LPN problem.

By comparing the term (8b+200)δ−2a
in Theorem 2 with our value of 8 ln( 2b

θ
)δ−2a

, one might check that our
term is roughly a factor 2 smaller than that of [35] for practical values of a and b. For example, for a LPN768,0.01
instance (with a = 11, b = 70), our analysis requires 268 queries for the solving phase while the Levieil and Fouque
analysis requires 269 queries.

3.3 LF2 algorithm

Having the new bounds for LF1, we can state a similar result for LF2. Recall that when n = 3 · 2b, LF2 preserves
the number of queries during the reduction phase. For 3 ·2b ≥ n′ we have that:

Theorem 6 For k ≤ a · b and n = 3 · 2b ≥ 8ln( 2b

θ
)δ−2a

, the LF2 algorithm heuristically (n = 3 · 2b, t = O(kan+
b2b),m = kn+b2b,θ,b)-solves the LPN problem.

One can observe that we may allow n to be smaller than 3 ·2b. Given that the solving phase may require less than
3 · 2b, we could start with less queries, decrease the number of queries during the reduction and end up with the
exact number of queries needed for the solving phase.

3.4 Covering Codes Algorithm

Recall that the algorithm first reduces the size of the secret to k′′ bits by running BKW reduction steps. Then it
approximates the vi vector to the nearest codeword gi in a [k′′, `] linear code with G as generator matrix. The noisy
inner products can be rewritten as

ci = 〈g′iG,s2〉⊕〈vi−gi,s2〉⊕di = 〈g′i,s2GT 〉⊕d′i = 〈g′i,s′2〉⊕d′i ,

where gi = g′iG, s′2 = s2GT and d′i = 〈gi− vi,s2〉⊕di.
Given that the code has a covering radius of ρ and that the Hamming weight of s2 is smaller than w1, the bias

of 〈gi−vi,s2〉 is computed as δ′ =
(
1−2 ρ

k′′
)w1 in [25], where k′′ is the size of s2. We stress that this approximation

is far from good.
Indeed, with the [3,1] repetition code given as an example in [25], the xor of two error bits is unbiased. Even

worse: the xor of the three bits has a negative bias. So, when using the code obtained by 25 concatenations of
this repetition code and w1 = 6, with some probability of 36% we have at least two error bits falling in the same
concatenation and the bias makes this approach fail.

We can do the same computation with the concatenation of five [23,12] Golay codes with w1 = 15, as suggested
in [25]. With probability 0.21%, the bias is zero or negative so the algorithm fails. With some probability 8.3%,
the bias is too low.
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In any case, we cannot take the error bits as independent. When the code has optimal covering radius ρ, we can
actually find an explicit formula for the bias of 〈vi−gi,s2〉 assuming that s2 has weight w1:

Pr[〈vi−gi,s2〉= 1|HW (s2) = w1] =
1

S(k′′,ρ) ∑
i≤ρ,i odd

(w1

i

)
S(k′′−w1,ρ− i)

where S(k′′,ρ) is the number of k′′-bit strings with weight at most ρ.
To solve LPN512,0.125, [25] proposes the following parameters

a = 6 a′ = 9 b = 63 `= 64 k′′ = 124 w0 = 2 w1 = 16

and obtain n= 266.3 and a complexity of 279.92. With these parameters, [25] approximated the bias to
(
1−2 ρ

k′′
)w1 =

2−5.91 (with ρ = 14). With our exact formula, the bias should rather be of 2−7.05. So, n should be multiplied by
4.82 (the square of the ratio).

Also, we stress that all this assumes the construction of a code with optimal radius coverage, such as the Golay
codes, or the repetition codes of odd length and dimension 1. But these codes do not exist for all [k′′, `]. If we
use concatenations of repetition codes, given as an example in [25], the formula for the bias changes. Given `

concatenations of the [ki,1] repetition code, with k1 + . . .+ k` = k′′, ki ≈ k′′
` and 1 ≤ i ≤ `, we would have to split

the secret s2 in chunks of k1, . . . ,k` bits. We take w11 + . . .+w1` = w1 where w1i is the weight of s2 on the ith

chunk. In this case the bias for each repetition code is

δi = 1−2× 1
S(ki,ρi)

∑
j≤ρi, j odd

(
w1i

j

)
S(ki−w1i,ρi− j), (1)

where ρi = b ki
2 c.

The final bias is
δ
′ = δ1 · · ·δ`. (2)

We emphasize that the value of n is underestimated in [25]. Indeed, with n′ = bias−2, the probability that
argmax( f̂ (ν)) = s′2 is too low in LF1. To have a constant probability of success θ, our analysis says that we should
multiply n′ by 8ln( 2`

θ
). For LPN512,0.125 and θ = 1

3 , this is 363.
When presenting their algorithm at Asiacrypt 2014, the authors of [25] updated their computation by using

our suggested formulas for the bias and the number of queries. In order to obtain a complexity smaller than 280,
they further improved their algorithm by the following observation: instead of assuming that the secret s2 has a
Hamming weight smaller or equal to w1, the algorithm takes now into account all the Hamming weights that would
give a good bias for the covering code reduction. I.e., the algorithm takes into account all the Hamming weights
w for which δ′ > εset, where εset is a preset bias. The probability of a good secret changes from Pr(w1,k′′) to
Pr(HW ) that we define below. They further adapted the algorithm by using the LF2 reduction steps. Recall that for
n = 3 · 2b, the number of queries are preserved during the reduction phase. With these changes they propose the
following parameters for LPN512,0.125:

a = 5 b = 62 `= 60 k′′ = 180 w0 = 2 εset = 2−14.18

Using two [90,30] linear codes, they obtain that n = 263.6 = 3 · 2b queries are needed, the memory used is of
m = 272.6 bits and the time complexity is t = 279.7. Thus, this algorithm gives better performance than LF2 and
shows that this LPN instance does not offer a security of 80 bits. 4

With all the above observations we update the Theorem 3.

Theorem 7 Let a,a′,b,w0,w1, `,k′,k′′,εset be the algorithm parameters. The covering code
(n = 8ln( 2`

θ
) 1

δ2a+1
ε2
set

+a2b ,t,m = kn+2k′′−`+ `2`,θ, `)-solves the LPN problem 5, where δ = 1−2τ and εset is a

preset bias. The code chosen for the covering code reduction step can be expressed as the concatenation of one or
more linear codes. The time t complexity can be expressed as

t =
tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0,k′− k′′)Pr(HW )
,

where
4 For the computation of n the authors of [25] use the term 4ln(2`) instead of 8 ln( 2`

θ
). If we use our formula, we obtain that we need more

than 3 ·2b queries and obtain a complexity of t = 280.08.
5 This n corresponds to covering code reduction using LF1. For LF2 reduction steps we need to have n = 3 ·2b+ k ≥ 8ln( 2`

θ
) 1

δ2a+1
ε2
set

.



On Solving LPN using BKW and Variants 13

– tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret
– tbkw reduction = (k+1)an is the cost of the BKW reduction steps
– tguess = n′∑w0

i=0

(k′−k′′
i

)
i is the cost of guessing k′−k′′ bits and n′ = n−k−a2b represents the number of queries

at the end of the reduction phase
– tcovering code = (k′′−`)(2n′+2`) is the cost of the covering code reduction and n′ is again the number of queries
– tWalsh transform = `2` ∑

w0
i=0

(k′−k′′
i

)
is the cost of applying the fast Walsh-Hadamard transform for every guess of

k′− k′′ bits
– Pr(HW ) = ∑wi(1− τ)k′′−wiτwi

(k′′
wi

)
where wi is chosen such that the bias δ′ (computed following (1) and (2)),

which depends on wi and the covering radius ρ of the chosen code, is larger than εset

4 Other LPN Solving Algorithms

Most LPN-based encryption schemes use τ as a function of k, e.g. τ = 1√
k

[3,16]. The bigger the value of k, the
lower the level of noise. For k = 768, we have τ≈ 0.036. For such a value we say that the noise is sparse. Given that
these LPN instances are used in practice, we consider how we can construct other algorithms that take advantage
of this extra information.

The first two algorithms presented in this section bring new ideas for the solving phase. The third one provides
a method to recover the whole secret and does not need any reduction phase.

We maintain the notations used in the previous section: n′ queries remain after the reduction phase, the bias is
δ′ and the block size is k′.

For these solving algorithms, we assume that the secret is sparse. Even if the secret is not sparse, we can just
assume that the noise is sparse. We can transform an LPN instance to an instance of LPN where the secret is actually
a vector of noise bits by the method presented in [33]. The details of this transform were given in Section 2.2.5 for
the covering codes algorithm.

We denote by ∆ the sparseness of the secret, i.e. Pr[si = 1] = 1−∆

2 for any 1 ≤ i ≤ k. We say that the secret is
∆-sparse. We can take ∆ = δ.

The assumption we make is that the Hamming weight of the k′-bit length secret s is in a given range. On
average we have that HW (s) = k′( 1−∆

2 ), so an appropriate range is
[
0,k′( 1−∆

2 )+ σ

2

√
k′
]
, where σ is constant. We

denote k′( 1−∆

2 ) by EHW and σ

2

√
k′ by dev. Thus, we are searching in the range [0,EHW +dev]. We can bound the

probability that the secret has a Hamming weight outside the range by using the Hoeffding bound [27].
Let X1,X2, . . . ,Xk′ be independent random variables that correspond to the secret bits, i.e. Pr[Xi = 1] = 1−∆

2 and
Pr(Xi ∈ [0,1]) = 1. We have E(X) = 1−∆

2 k′. Using Theorem 12, we get that

Pr[HW (s) not in range] = Pr

[
HW (s)− (1−∆)

2
k′ ≥ σ

√
k′

4

]
≤ e−

σ2
2 .

If we want to bound by θ/2 the probability that HW (s) is not in the correct range for one block, we obtain that

σ =
√

2ln( 2
θ
).

4.1 Exhaustive search on sparse secret

We have S = ∑
EHW+dev
i=0

(k′
i

)
vectors ν with Hamming weight in our range. One first idea would be to perform an

exhaustive search on the sparse secret. We denote this algorithm by Search1. For every such value ν, we compute
HW (AνT +c). In order to compute the Hamming weight we have to compute the multiplication between A and all
ν which have the Hamming weight in the correct range. This operation would take O(Sn′k′) time but we can save a
k′ factor by the following observation done in [7]: computing AνT , with HW (ν) = i means xoring i columns of A.
If we have the values of AνT for all ν where HW (ν) = i then we can compute Aν′T for HW (ν′) = i+1 by adding
one extra column to the previous results.

We use here a similar reasoning done for the Walsh-Hadamard transform. When ν = s, the value of HW (AsT +
c) is equal to HW (d) and we assume that this is the smallest value as we have more noise bits set on 0 than 1.
Thus, going through all possible values of ν and keeping the minimum will give us the value of the secret. The
time complexity of Search1 is the complexity of computing the Hamming weight, i.e. O(Sn′).
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Besides Search1, which requires a matrix multiplication for each trial, we also discovered that a Walsh trans-
form can be used for a sparse secret. We call this algorithm Search2. The advantage is that a Walsh transform is
faster than a naive exhaustive search and thus improves the time complexity. We thus compute the fast Walsh-
Hadamard transform and search the maximum of f̂ only for those S values with Hamming weight in the correct
range. Given that we apply a Walsh transform we get that the complexity of this solving algorithm is O(k′2k′). So,
it is more interesting than Search1 when Sn′ > k′2k′ .

For both algorithms the failure probability is given by the scenario where there exists another sparse value ν 6= s
such that HW (AνT + c)≤ HW (AsT + c). As we search through S possible values for the secret we obtain that

Pr[incorrect guess on one block]≤ Se−
n′δ′2

8 .

The above probability accounts for only one block of the secret. Thus we can say that with σ =
√

2ln( 2
θ
) and

n = 8(ln 2S
θ
)δ−2a

+(a−1)2b, the probability of failure is smaller than θ.
Another failure scenario, that we take into account into our analysis, occurs when the secret has a Hamming

weight outside our range.

Complexity analysis. Taking n = n′+(a− 1)2b, k′ = b, δ′ = δ2a−1
and ∆ = δ, we obtain the following theorems

for Search1 and Search2:

Theorem 8 Let S=∑
EHW+dev
i=0

(b
i

)
where EHW = b( 1−∆

2 ) and dev= σ

2

√
b and let n′= 8ln( 2S

θ
)δ−2a

. For k≤ a ·b and
a secret s that is ∆-sparse, the Search1 algorithm heuristically (n= 8ln( 2S

θ
)δ−2a

+(a−1)2b, t =O(kan+n′S),m=

kn+b
( b

EHW+dev

)
,θ,b)-solves the LPN problem.

Theorem 9 Let S = ∑
EHW+dev
i=0

(b
i

)
where EHW = b( 1−∆

2 ) and dev = σ

2

√
b. For k ≤ a · b and a secret s that is ∆-

sparse, the Search2 algorithm heuristically (n = 8ln( 2S
θ
)δ−2a

+(a− 1)2b, t = O(kan+ b2b),m = kn,θ,b)-solves
the LPN problem.

Here, we take the probability, that any of the two failure scenarios to happen, to be each θ/2. A search for the
optimal values such that their sum is θ, brings a very little improvement to our results. Taking k′ = b, we stress
that S is much smaller than the 2k′ = 2b term that is used for LF1. For example, for k = 768, a = 11, b = 70 and
τ = 0.05, we have that S ≈ 233 which is smaller than 2b = 270 and we get n′ = 267.33 and n = 273.34 (compared to
n′ = 268.32 and n = 273.37 for LF1). We thus expect to require less queries for exhaustive search compared to LF1.
As the asymptotic time complexity of Search2 is the same as LF1 and the number of queries is smaller, we expect
to see that this algorithm runs faster than LF1.

4.2 Meet in the middle on sparse secret (MITM)

Given that AsT +d = c, we split s into s1 and s2 and rewrite the equation as A1sT
1 +d = A2sT

2 + c. With this split,
we try to construct a meet-in-the-middle attack by looking for A2sT

2 + c close to A1sT
1 . The secret s has size k′ and

we split it into s1 of size k1 and s2 of size k2 such that k1 + k2 = k′. We consider that both s1 and s2 are sparse.
Thus the Hamming weight of si lies in the range

[
0,ki(

1−∆

2 )+ σ′
2

√
ki

]
. We denote ki(

1−∆

2 )+ σ′
2

√
ki by maxHW(ki).

In order to bound the probability that both estimates are correct we use the same bound shown in Section 4 and

obtain that σ′ =
√

2ln( 4
θ
).

For our MITM attack we have a pre-computation phase. We compute and store A1sT
1 for all S1 =∑

maxHW(k1)
i=0

(k1
i

)
possible values for s1. We do the same for s2, i.e compute A2sT

2 + c for all S2 = ∑
maxHW(k2)
i=0

(k2
i

)
vectors s2. The

pre-computation phase takes (S1 +S2)n′ steps in total. Afterwards we pick ξ bit positions and hope that the noise
d has only values of 0 on these positions. If this is true, then we could build a mask µ that has Hamming weight ξ

such that d∧µ = 0. The probability for this to happen is ( 1+δ′
2 )ξ = e−ξ ln 2

1+δ′ .
We build our meet-in-the-middle attack by constructing a hash table where we store, for all s2 values, A2sT

2 +c
at position h((A2sT

2 + c)∧ µ). We have S2 vectors s2, so we expect to have S22−ξ vectors on each position of the
hash table. For all S1 values of s1, we check for collisions, i.e. h((A1sT

1 )∧µ) = h((A2sT
2 + c)∧µ). If this happens,

we check if A1sT
1 xored with A2sT

2 + c gives a vector d with a small Hamming weight. Remember that with the
pre-computed values we can compute d with only one xor operation. If the resulting vector has a Hamming weight
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in our range, then we believe we have found the correct s1 and s2 values and we can recover the value of s. Given
that A1sT

1 +A2sT
2 +d = c, we expect to have (A2sT

2 +c)∧µ = A1sT
1 ∧µ only when d∧µ = 0. The condition d∧µ = 0

holds with a probability of ( 1+δ′
2 )ξ so we have to repeat our algorithm ( 2

1+δ′ )
ξ times in order to be sure that our

condition is fulfilled.
As for exhaustive search, we have two scenarios that could result in a failure. One scenario is when s1 or

s2 have a Hamming weight outside the range. The second one happens when there is another vector ν 6= s such
that HW (A1νT

1 +A2νT
2 + c)≤HW (A1sT

1 +A2sT
2 +c) and (A1νT

1 +A2νT
2 +c)∧µ = 0. This occurs with probability

smaller than S1S2e−
n′δ′2

8 .

Complexity analysis. The time complexity of constructing the MITM attack is (S1+S2)n′+((S1+S2)ξ+S1S22−ξn′)·
( 2

1+δ′ )
ξ. We include here the cost of the pre-computation phase and the actual MITM cost. We obtain that the

time complexity is O((S1 + S2)n′+(S1 + S2)ξ(
2

1+δ′ )
ξ + S1S2n′( 1

1+δ′ )
ξ). Taking again n′ = n− (a− 1)2b, k′ = b,

δ′ = δ2a−1
, ∆ = δ, we obtain the following result for MITM.

Theorem 10 Let n′ = 8ln( 2
θ

S1S2)δ
−2a

. Take k1 and k2 values such that b= k1+k2. Let S j =∑
maxHW(k j)
i=0

(k j
i

)
where

maxHW(k j) = k j(
1−∆

2 )+ σ′
2

√
k j for j ∈ {1,2}. For k ≤ a ·b and a secret s that is ∆-sparse, the MITM algorithm

heuristically (n= 8ln( 2
θ

S1S2)δ
−2a

+(a−1)2b, t =O(kan+(S1+S2)n′+(S1+S2)ξ(
2

1+δ2a−1 )
ξ+S1S2n′( 1

1+δ2a−1 )
ξ),

m = kn+S2 +(S1 +S2)n′,θ,b)-solves the LPN problem.

4.3 Gaussian Elimination

In the case of a sparse noise, one may try to recover the secret s by using Gaussian elimination. It is well known
that LPN with noise 0, i.e. τ = 0, is an easy problem. This idea was used in [12] in order to mount a passive
attack on HB and HB+ protocols. If we are given Θ(k) queries for which the noise is 0, one can just run Gaussian
elimination and in O(k3) recover the secret s. For a LPNk,τ instance, the event of having no noise for k queries
happens with a probability pnonoise = (1− τ)k.

We design the following algorithm for solving LPN: first, we have no reduction phase. For each k new queries,
we assume that the noise is 0. We recover an ν through Gaussian elimination. We must test if this value is the
correct secret by computing the Hamming weight of A′νT +c′, where A′ is the matrix that contains n′ fresh queries
and c′ is the vector containing the corresponding noisy inner products. We expect to have a Hamming weight in
the range [0,( 1−δ

2 )n′+σ

√
n′

2 ], where σ is a constant. From the previous results we know that for a correct secret we
have

Pr[HW (A′sT + c′) not in range]≤ e−
σ2
2 .

If we want to bound by θ/2 the probability that the Hamming weight of the noise is not in the correct range,

for the correct secret, we obtain that σ =
√

2ln( 2
θ
).

For a ν 6= s, we use the Hoeffding inequality to bound that HW (A′νT +c′) is in the correct range. Let X1, . . . ,Xn′

be the random variables that correspond to Xi = 〈vi,ν〉⊕ ci. Let X = X1 + . . .+Xn′ . We have E(X) = n′
2 . Using the

Hoeffding inequality, we take λ = δn′
2 −σ

√
n′

2 and obtain

Pr[failure] = 2k Pr[HW (A′νT + c′)] in correct range]

= 2k Pr[X−E(X)≤−λ]

≤ 2ke−
2( δn′

2 −σ

√
n′
2 )2

n′ = 2ke−
(δ
√

n′−σ)2
2

If we bound this probability of failure by θ/2 we obtain that we need at least n′ = (
√

2ln 2k+1

θ
+σ)2δ−2 queries

besides the k that are used for the Gaussian elimination.
As aforementioned, with a probability of pnonoise = (1− τ)k, the Gaussian elimination will give the correct

secret. Thus, we have to repeat our algorithm 1
pnonoise

times.
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Complexity analysis. The computation of the Hamming weight has a cost of O(n′k2). Given that we run the
Gaussian elimination and the verification step 1

pnonoise
times, we obtain the following theorem for this algorithm:

Theorem 11 Let n′ =
(√

2ln 2k+1

θ
+
√

2ln( 2
θ
)

)2

δ−2. The Gaussian elimination algorithm (n = k+2
(1−τ)k + n′, t =

O
(

n′k2+k3

(1−τ)k

)
,m = k2 +n′k,θ,k)-solves the LPN problem.6

Remark 2 Notice that this algorithm recovers the whole secret at once and the only assumption we make is that
the noise is sparse. We don’t need to run the transform such that we have a sparse secret and there are no queries
lost during the reduction phase.

Remark 3 In the extreme case where (1− τ)k > θ, the Gaussian elimination algorithm can just assume that k
queries have noise 0 and retrieve the secret s without verifying that this is the correct secret.

5 Tightness of Our Query Complexity

In this section we compare the theoretical analysis with implementation results of all the LPN solving algorithms
described in Sections 3 & 4.

We implemented the BKW, LF1 and LF2 algorithms as they are presented in [35] and in pseudocode in Al-
gorithms 1-3. The implementation was done in C on a Intel Xeon 3.33Ghz CPU. We used a custom bit library
to store and handle bit vectors. Using the OpenMP library7, we have also parallelized certain crucial parts of
the algorithms. The xor-ing in the reduction phases as well as the majority phases for instance, are easily dis-
tributed onto multiple threads to speed up the computation. Furthermore, we implemented the exhaustive search
and MITM algorithms described in Section 4. The various matrix operations performed for the sparse LPN solving
algorithms are done with the M4RI library 8. Regarding the memory model used, we implemented the one de-
scribed in [35] in order to accommodate the LF2 algorithm. The source code of our implementation can be found
at http://lasec.epfl.ch/lpn/lpn_source_code.zip.

We ran all the algorithms for different LPN instances where the size of the secret varies from 32 to 100 bits
and the Bernoulli parameter τ takes different values from 0.01 to 0.4. A value of τ = 0.1 for a small k as the one
we are able to test means that very few, if none, of the queries have the noise bits set on 1. For this sparse case, an
exhaustive search is the optimal strategy. Also, τ = 0.4 might seem also as an extreme case. Still, we provide the
query complexity for these extreme cases to fully observe the behaviour of the LPN solving algorithms.

For each LPN instance, we try to find the theoretical number of oracle queries required to get a 50% probability
of recovering the full secret while optimizing the time complexity. This means that in half of our instances we
recover the secret correctly. In the other half of the cases it may happen that one or more bits are guessed wrong.
We thus take θ = 1

3 as the probability of failure for the first block. We choose a and b that would minimize the
time complexity and we apply this split in our theoretical bounds in order to compute the theoretical number of
initial queries. We apply the same split in practice and try to minimize the number of initial queries such that we
maintain a 50% probability of success. We thus experimented with different values for the original number of oracle
samples, and ran multiple instances of the algorithms to approximate the success probability. One can observe that
in our practical and theoretical results the a,b parameters are the same and the comparison is consistent. We were
limited by the power of our experimental environment and thus we were not able to provide results for instances
that require more than 230 queries.

5.1 BKW∗

The implementation results for BKW∗ are presented in Table 3. Each entry in the table is of the form log2(n)(a),
where n is the number of oracle queries that were required to obtain a 50% success rate for the full recovery of the
secret. Parameter a is the algorithm parameter denoting the number of blocks into which the vectors were split. We
take b = d k

ae. By maintaining the value of a, we can easily compute the number of queries and the time & memory
complexity. In Table 4 we present the theoretical results for BKW∗ obtained by using Theorem 4. We can see that
our theoretical and practical results are within a factor of at most 2.

6 Given that we receive uniformly distributed vectors from the LPN oracle, from n+ 2 vectors v we expect to have n linearly independent
ones.

7 http://openmp.org/wp
8 http://m4ri.sagemath.org/

http://lasec.epfl.ch/lpn/lpn_source_code.zip
http://openmp.org/wp
http://m4ri.sagemath.org/
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Table 3: BKW∗ query complexity - practice

τ
k

32 48 64 80 100

0.01 10.40(5) 11.85(6) 15.01(6) 17.68(7) 20.78(7)

0.10 14.32(4) 19.99(4) 23.13(4) 27.30(4)

0.20 18.64(3) 23.84(3)

0.25 21.93(2) 25.95(3)

0.40 27.25(2)

Table 4: BKW∗ query complexity - theory

τ
k

32 48 64 80 100

0.01 10.97(5) 12.82(6) 15.93(6) 18.66(7) 21.74(7)

0.10 15.84(4) 20.01(4) 24.12(4) 28.20(4) 33.28(4)

0.20 19.71(3) 24.85(3) 30.97(3) 34.83(4) 39.90(4)

0.25 21.81(2) 26.95(3) 33.07(3) 38.14(3) 44.11(4)

0.40 28.24(2) 36.38(2) 43.64(3) 48.71(3) 55.78(3)

Table 5: LF1 query complexity - practice

τ
k

32 48 64 80 100

0.01 7.32(6) 10.12(6) 11.58(7) 13.32(8) 14.99(8)

0.10 10.20(4) 13.20(4) 15.52(5) 17.98(5) 21.38(5)

0.20 11.53(3) 15.57(3) 18.03(4) 21.04(4) 25.18(4)

0.25 12.69(3) 16.20(3) 20.70(4) 22.24(4) 25.93(4)

0.40 15.61(2) 19.74(2) 23.97(3)

Table 6: LF1 query complexity - theory

τ
k

32 48 64 80 100

0.01 8.89(6) 10.53(6) 12.77(7) 14.17(8) 16.13(8)

0.10 11.38(4) 13.87(4) 17.04(5) 18.56(5) 22.05(5)

0.20 13.01(3) 17.06(3) 19.05(4) 21.77(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.65(4) 23.39(4) 26.72(4)

0.40 16.95(2) 24.01(2) 25.83(3) 28.30(3) 35.00(3)

If we take the example of LPN100,0.01, we need 220.78 queries and our theoretical analysis gives a value of 221.47.
These two values are very close compared with the value predicted by [35], 225.64, which is a factor 10 larger. We
emphasize again that for both the theory and the practice we use the split that optimizes the time complexity and
from this optimal split we derive the number of queries.

Remark 4 For the BKW∗ algorithm we tried to optimize the average final bias of the queries, i.e. obtaining a better
value than δ2a−1

. Recall that at the beginning of the reduction phase, we order the queries in equivalence classes
and then choose a representative vector that is xored with the rest of queries from the same class. One variation
of this reduction operation would be to change several times the representative vector. The incentive for doing so
is the following: one representative vector that has error vector set on 1 affects the bias δ of all queries, while by
choosing several representative vectors this situation may be improved; more than half of them will have error bit
on 0. We implemented this new approach but we found that it does not bring any significant improvement. Another
change that was tested was about the majority rule applied during the solving phase. Queries have a worst case
bias of δ2a−1

(See Lemma 2), but some have a larger bias. So, we could apply a weighted majority rule. This would
decrease the number of queries needed for the solving phase. We implemented the idea and discovered that the
complexity advantage is very small.

5.2 LF1

Below we present the experimental and theoretical results for the LF1 algorithm. As a first observation we can see
that, for all instances, this algorithm is a clear optimization over the original BKW∗ algorithm. As before, each
entry is of the form log2(n)(a), where n and a are selected to obtain a 50% success rate for the full recovery of the
secret and b = d k

ae.

Table 6 shows our theoretical results for LF1 using Theorem 5. When we compare the experimental and the
practical results for LF1 (See Table 5 and Table 6) we can see that the gap between them is of a factor up to 3.

Remark 5 One may observe a larger difference for the LPN48,0.4 instance: n = 219.74 (practice) vs. n = 224.01

(theory). For this case, the implementation requires n = 219.74 initial queries compared with the theory that requires
n = 224.01 queries. Here we have a = 2 and b = 24 and the term (a− 1)2b dominates the query complexity. The
discrepancy comes from the worst-case analysis of the reduction phase where we say that at each reduction step
we discard 2b queries. With this reasoning, we predict to lose 224 queries. If we analyse more closely, we discover
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Table 7: LF2 query complexity - practice

τ
k

32 48 64 80 100

0.01 6.85(6) 9.09(6) 10.24(7) 12.41(8) 13.15(8)

0.10 9.30(4) 12.60(4) 15.12(5) 16.90(5) 20.65(5)

0.20 10.88(3) 15.40(3) 16.94(4) 20.47(4) 24.88(4)

0.25 12.34(3) 15.92(3) 20.61(4) 21.00(4) 25.40(4)

0.40 15.44(2) 19.74(2) 23.52(3)

that actually in the average-case we discard only 2b ·
[
1−
(

1− 1
2b

)n]
queries (this is the number of expected non-

empty equivalence classes). Thus, with only 219.74 initial queries, we run the reduction phase and discard 219.70

queries, instead of 224. We are left with 214.45, queries which are sufficient for the solving phase. We note that
for large LPN instances, this difference between worst-case and average-case analysis for the number of deleted
queries during reduction rounds becomes negligible.

Remark 6 Recall that in LF1, like in all LPN solving algorithms, we perform the reduction phase by splitting the
queries into a blocks of size b. When this split is not possible, we consider that we have a−1 blocks of size b and
a last block shorter of size b′ with b′ < b. By LF1∗ we denote the same LPN solving algorithm that makes use of
the Walsh transform but where the split of the blocks is done different. We allow now to have a last block larger
than the rest. The gain for this strategy may be the following: given that we recover a larger block of the key, we
run our solving phase fewer times. Although the complexity of the transform is bigger as we work with a bigger
block, the reduction phase has to be applied fewer times. From our experiments we discover there seems to be no
difference between the performance of the two algorithms.

5.3 LF2

We tested the LF2 heuristic on the same instances as for BKW∗ and LF1. The results are summarized in Table 7. To
illustrate the performance of the heuristic, we concentrate on a particular instance, LPN100,0.1 with a= 5,b= 20. As
derived in [35], the LF1 algorithm for this parameter set should require less than (8 ·b+200) ·δ−2a ≈ 218.77 queries
for a solving phase and (a− 1) · 2b +(8 · b+ 200) · δ−2a ≈ 222.13 queries overall to achieve a success probability
of 50%. Using our theoretical analysis, the LF1 algorithm for this parameter set requires to have 8ln(3 ·2b)δ−2a

+
(a−1)2b ≈ 222.05 queries overall and 217.20 queries for the solving phase. Our experimental results for LF1 were a
bit lower than our theoretical ones: 221.38 oracle samples were sufficient. If we use the LF2 heuristic starting with
3 · 220 ≈ 221.58 samples, we get about the same amount of vectors for the solving phase. In this case there are no
queries lost during reduction. We thus have much more queries than should actually be required for a successful
solving phase and correctly solve the problem with success probability close to 100%. So we can try to start with
less. By starting off with 220.65 queries and thus loosing some queries in each reduction round, we also solved the
LPN problem in slightly over 50% of the cases. The gain in total query complexity for LF2 is thus noticeable but
not extremely important.

As another example, consider the parameter set k = 768,τ = 0.05 proposed at the end of [35]. The values for
a,b which minimize the query complexity are a = 9,b = 86 (a ·b = 774 > k). Solving the problem with LF1 should
thus require about 287 vectors for the solving phase and 289 oracle samples overall. Using LF2, as 3 ·2b ≈ 287 oracle
samples would be sufficient, we obtain a reduction by a factor ≈ 4.

Even though LF2 introduces linear dependencies between queries, this doesn’t seem to have any noticeable
impact on the success probability in recovering the secret value.

Remark 7 A general observation for all these three algorithms, shown also by our results, is that the bias has a big
impact on the number of queries and the complexity. Recall that the bias has value δ2a−1

at the end of the reduction
phase. We can see from our tables that the lower the value of τ, i.e. larger value of δ = 1− 2τ, the higher a can
be chosen to solve the LPN instance. Also, for a constant τ, the higher the size of the secret, the higher a can be
chosen.
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Table 8: Search1 query complexity - practice

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 16.44(4) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 19.88(3)

0.40 15.61(2) 19.74(2)

Table 9: Search1 query complexity - theory

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 17.61(4) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 23.01(3) 28.00(3) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 10: Search2 query complexity - practice

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 15.36(5) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 20.63(4)

0.40 15.61(2) 19.74(2)

Table 11: Search2 query complexity - theory

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 16.89(5) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.63(4) 23.38(4) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Remark 8 The LF2 algorithm is a variation of LF1 that offers a different heuristic technique to decrease the number
of initial queries. The same trick could be used for BKW∗, exhaustive search and MITM.

While the same analysis can be applied for exhaustive search and MITM as for LF2, BKW∗ is a special case.
We denote by BKW2 this variation of BKW where we use the reduction phase from LF2. Recall that for BKW∗ we
need to have n = 2b+1δ−2a

ln( b
θ
)+(a−1)2b queries and here the dominant term is 2b+1δ−2a

ln( b
θ
). Thus, we need

to start with 3 · 2b + ε, where ε > 0 and increase such that at the end of the last iteration of the reduction we get
the required number of queries. This improves the initial number of queries and we have a gain of factor a for the
time complexity. For an LPN48,0.1 instance, our implementation of BKW2 requires n = 213.82 = 3.54 · 212 initial
queries and increases it, during the reduction phase, up to 219.51, the amount of queries needed for the solving
phase. Thus, there is an improvement from 219.99 (See Table 3) to 213.82 and the time complexity is better. While
this is an improvement over BKW∗, it still performs worse than LF1 and LF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. The results for Search1 are displayed in Table 8 and
Table 9. For Search1 we observe that the gap between theory and practice is of a factor smaller than 4. In terms
of number of queries, Search1 brings a small improvement compared to LF1. We will see in the next section
the complete comparison between all the implemented algorithms. The same (a−1)2b dominant term causes the
bigger difference for the instances LPN48,0.4 and LPN64,0.25.

The results for Search2 are displayed in Table 10 and Table 11.

We notice that for both Search1 and Search2 the instances LPN32,0.01, LPN48,0.01 and LPN68,0.01 have the
number of queries very low. This is due to the following observation: for n≤ 68 linearly independent queries and
τ = 0.01 we have that the noise bits are all 0 with a probability larger than 50%. Thus, for k ≤ 64 we hope that the
k queries we receive from the oracle have all the noise set on 0. With k noiseless, linearly independent queries we
can just recover s with Gaussian elimination. This is an application of Remark 3.
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Table 12: MITM query complexity - practice

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.13(4) 13.15(4) 16.47(4)

0.20 11.49(3) 15.54(3)

0.25 12.89(2)

0.40

Table 13: MITM query complexity - theory

τ
k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.10(8) 16.10(8)

0.10 11.37(4) 13.87(4) 17.61(4) 21.59(4) 22.05(5)

0.20 13.02(3) 17.06(3) 23.00(3) 28.00(3) 26.59(4)

0.25 16.03(2) 17.26(3) 23.01(3) 28.00(3) 35.00(3)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 14: Gaussian elimination query complexity - theory

τ
k

32 48 64 80 100

0.01 5.16 5.70 6.12 8.43 8.89

0.10 10.04 12.91 15.73 18.48 21.84

0.20 15.31 21.04 26.60 32.08 38.84

0.25 18.28 25.51 32.56 39.52 48.15

0.40 28.58 40.96 53.17 65.28 80.34

5.5 MITM

In the case of MITM, the experimental and theoretical results are illustrated in Table 12 and Table 13. There is
a very small difference between MITM and exhaustive search algorithms for a sparse secret: in practice, MITM
requires just couple of tens queries less than Search1 and Search2 for the same a and b parameters.

5.6 Gaussian Elimination

As aforementioned, in the Gaussian elimination the only assumption we need is to have a noise sparse. We don’t
run any reduction technique and the noise is not affected. As the algorithm depends on the probability to have a 0
noise on k linearly independent vectors, the complexity decays very quickly once we are outside the sparse noise
scenario. We present in Table 14 the theoretical results obtained for this algorithm.

In the next section we will show the effectiveness of this simple idea in the sparse case scenario and compare
it to the other LPN solving algorithms.

Again for LPN32,0.01, LPN48,0.01 and LPN64,0.01 we apply Remark 3.

5.7 Covering Codes

The covering code requires the existence of a code with the optimal coverage. For each instance one has to find an
optimal code that minimizes the query and time complexity. Unlike the previous algorithms, this algorithm cannot
be truly automatized. In practice we could test only the cases that were suggested in [25]. Thus, we are not able
to compare the theoretical and practical values. Nevertheless, we will give theoretical values for different practical
parameters in the next section.

6 Complexity Analysis of the LPN Solving Algorithms

We have compared our theoretical bounds with our practical results and we saw that there is a small difference
between the two. Our theoretical analysis also gives tighter bounds compared with the results from [35]. We now
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Fig. 1: Time Complexity of LPN Algorithms on instances LPNk, 1√
k

extend our theoretical results and compare the asymptotic performance of all the LPN algorithms for practical
parameters used by the LPN-based constructions. We consider the family of LPNk, 1√

k
instances proposed in [3,

16]. Although the covering code cannot be automatized, as for each instance we have to try different codes with
different sizes and dimensions, we provide results also for this algorithm. When dealing with the covering code
reduction, we always assume the existence of an ideal code and compute the bias introduced by this step. We do
not consider here concatenation of ideal codes and we will see that we obtain a worse result for the LPN512,0.125
instance compared with the result from [25], although the difference is small. In the covering code algorithm we
also stick with the BKW reduction steps and don’t use the LF2 reduction. As aforementioned, the LF2 reduction
brings a small improvement to the final complexity. This does not affect the comparison between all the LPN
solving algorithms.

We analyse the time complexity of each algorithm, by which we mean the number of bit operations the al-
gorithm performs while solving an LPN problem. For each algorithm, we consider values of k for which the
parameters (a,b) minimising the time complexity are such that k = a · b. For the LF2 algorithm, we select the
initial number of queries such that we are left with at least n′ = 8ln(3 ·2b)δ−2a

queries after the reduction phase.
Recall that by Search1 we denote the standard exhaustive search algorithm and Search2 is making use of a Walsh-
Hadamard transform. The results are illustrated in Figure 1. We recall the time complexity and the initial number
of queries for each algorithm in Table 15, where S represents the number of sparse secrets with S < 2b. For
MITM, the values S1 (resp. S2) represent the number of possible values for the first (resp. second) half of the
secret, n′ = 8(ln(6S1S2))δ

−2a
represents the number of queries left after the reduction phase and ξ represents the

Hamming weight of the mask used. In the case of the covering codes algorithm, all a,b,a′,k′,k′′, l,w0,εset are
parameters of the algorithm and n′ represents the number of queries left after the reduction phase. Recall that θ is
1
3 .

We can bound the logarithmic complexity of all these algorithms by k
log2(k)

+ c1 and c3 log2(k)+
√

k
ln(2) + c2.

The lower bound is given by the asymptotic complexity of the Gaussian elimination that can be expressed as
log2 k+

√
k

ln(2) when τ = 1√
k
.

The complexity of BKW can be written as mink=ab(poly · 2b · δ−2a
) and for the other algorithms (except the

Gaussian elimination) the formula is mink=ab(poly · (2b + δ−2a
)), where poly denotes a polynomial factor. By

searching for the optimal a,b values, we have two cases:
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– for a > 1, we find a∼ log2
k

(log2 k)2 ln 1
δ

and b = k
a and obtain that 2b dominates δ−2a

. For δ = 1− 2√
k

we obtain

the complexity poly ·2
k

log2(k) .
– for a = 1, we have that for

– BKW the complexity is poly ·2k

– LF1,LF2,Search2 the complexity is poly+ k2k

– Search1, MIT M the complexity is poly · Sr and poly · S2
r′ , respectively, where we define Sr to be #{v ∈

{0,1}k | HW (v) ≤ r}. We need to bound the value of Sr. By induction we can show that Sr ≤ k
k−r−1 ·

kr

r! .
For τ ≈ 1√

k
, we have that r ≈ (1+ σ

2 )
√

k and r′ ≈ ( 1
2 +

σ

2
√

2
)
√

k. We obtain that the complexity for both

algorithms is poly · 2γ
√

k log2 k+O(
√

k), where γ is a constant. This is not better than 2
k

log2(k) for k < 200000,
but asymptotically this gives a better complexity.

Table 15: Query & Time complexity for LPN solving algorithms for recovering the first b bits

LPN algorithm Query complexity(n) Time complexity(t)

BKW 2b+1δ−2a
ln( b

θ
)+(a−1)2b kan

LF1 8ln( 2b

θ
)δ−2a

+(a−1)2b kan+b2b

Search1 8ln( 2S
θ
)δ−2a

+(a−1)2b kan+8ln( 2S
θ
)δ−2a

S

LF2 3 ·2b ≥ 8ln( 2b

θ
)δ−2a

kan+b2b

Search2 8ln( 2S
θ
)δ−2a

+(a−1)2b kan+b2b

MITM 8ln( 2
θ

S1S2)δ
−2a

+(a−1)2b
kan+comp+compmitm

where comp= (S1 +S2)n′ and
compmitm = (S1 +S2)ξ(

2
1+δ2a−1 )

ξ +S1S2n′( 1
1+δ2a−1 )

ξ

Gaussian elimination
k

(1−τ)k +(
√

2ln 2k+1

θ
+σ)2δ−2

(

√
2ln 2k+1

θ
+σ)2δ−2k2+k3

(1−τ)k
where σ =

√
2ln( 2

θ
)

Covering codes 8ln( 2`
θ
) 1

δ2a+1
ε2
set

nka′+comp+compsolving
where comp= (k+1)an+n′∑w0

i=0
(k′−k′′

i

)
i+(k′′− `)(2n′+2`)

compsolving = `2` ∑
w0
i=0
(k′−k′′

i

)
We see in Figure 1 that in some cases increasing the value of k may result in a decrease in time complexity.

The reason for this is that we are considering LPN instances where the noise parameter τ takes value 1√
k
. Thus, as

k grows, the noise is reduced, which leads to an interesting trade-off between the complexity of the solving phase
and the complexity of the reduction phase of the various algorithms. This behaviour does not seem to occur for the
BKW algorithm. In this case, the query complexity n = 2b+1(1− 2√

k
)−2a

ln(2k)+ (a− 1)2b is largely dominated
by the first term, which grows exponentially not only in terms of the noise parameter, but also in terms of the block
size b.

Remark 9 (LF1 vs. Search2) As shown in Figure 1, the overall complexity of the LF1 and Search2 algorithms is
quasi identical. From Theorems 5 and 9, we deduce that for the same parameters (a,b), the Search2 algorithm
should perform better as long as S < 2b−1. This is indeed the case for the instances we consider here, although the
difference in complexity is extremely small.

We can see clearly that for the LPNk, 1√
k

family of instances, the Gaussian elimination outperforms all the other

algorithms for k > 500. For no k < 1000, the LPNk, 1√
k

offers an 80 bit security. This requirement is achieved for

k = 1090.

Selecting secure parameters. We remind that for each algorithm we considered, our analysis made use of a heuris-
tic assumption of query and noise independence after reduction. In order to propose security parameters, we simply
consider the algorithm which performs best under this assumption.

By taking all the eight algorithms described in this article, Tables 16-23 display the logarithmic time complexity
for various LPN parameters. For instance, the LF2 algorithm requires 284 steps to solve a LPN384,0.25 instance.
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We recall here the result from [25]: an instance LPN512,0.125 offers a security of 79.7. We obtain a value of 82.
The difference comes mainly from the use of LF2 reduction in [25] and from a search of optimal concatenation of
linear codes.

When comparing all the algorithms, we have to keep in mind that the Gaussian elimination recovers the whole
secret, while for the rest of the algorithms we give the complexity to recover a block of the secret. Still, this does not
affect our comparison as we have proven in Section 3 that the complexity of recovering the first block dominates
the total complexity.

We highlight with red the best values obtained for different LPN instances. We observe the following behaviour:
for a sparse case scenario, i.e. τ = 0.05 for k ≥ 576 or τ = 1√

k
< 0.05, the Gaussian elimination offers the best

performance. For τ = 1√
k

no k from our tables offers a 80 bit security. Once we are outside the sparse case scenario,
we have that LF2 and the covering code algorithms are the best ones. The covering code proves to be better than
LF2 for a level of noise of 0.125. While the performance of the covering code reduction highly depends on the
sparseness of the noise, LF2 has a more general reduction phase and is more efficient for noise parameters of 0.25
and 0.4. Also for a τ > 0.5 the covering code is better than the Gaussian elimination.

Thus, for different scenarios, there are different algorithms that prove to be efficient. This comparison clearly
shows that for the family of instances LPNk, 1√

k
neither the BKW, nor its variants are the best ones. One should use

the Gaussian elimination algorithm.

Table 16: Security of LPN against BKW

τ
k

256 384 448 512 576 640 768 1280
1√
k

69 88 97 106 114 123 140 198

0.05 67 88 98 109 118 127 145 216

0.125 79 105 116 128 138 149 170 253

0.25 93 123 137 150 163 175 201 295

0.4 115 147 163 180 196 212 244 347

Table 17: Security of LPN against LF1

τ
k

256 384 448 512 576 640 768 1280
1√
k

50 63 71 79 85 88 102 145

0.05 50 62 71 79 87 95 102 159

0.125 56 73 78 88 98 107 125 176

0.25 64 84 89 100 110 121 142 199

0.4 76 94 103 116 129 142 168 229

Table 18: Security of LPN against LF2

τ
k

256 384 448 512 576 640 768 1280
1√
k

49 61 69 78 85 86 100 143

0.05 49 61 69 78 86 94 100 158

0.125 55 73 77 87 97 106 124 175

0.25 64 84 88 99 109 121 142 198

0.4 76 94 103 116 129 141 168 229

Table 19: Security of LPN against Search1

τ
k

256 384 448 512 576 640 768 1280
1√
k

56 69 77 80 87 95 108 154

0.05 51 69 78 84 89 95 111 162

0.125 64 82 91 100 110 121 140 199

0.25 82 110 122 134 145 155 179 263

0.4 109 141 157 173 189 205 236 337
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Table 20: Security of LPN against Search2

τ
k

256 384 448 512 576 640 768 1280
1√
k

50 63 71 79 84 88 102 145

0.05 50 62 71 79 87 95 102 159

0.125 56 73 78 88 98 107 125 176

0.25 64 84 89 100 110 121 142 199

0.4 76 94 103 116 129 142 168 229

Table 21: Security of LPN against MIT M

τ
k

256 384 448 512 576 640 768 1280
1√
k

56 70 78 86 91 96 111 159

0.05 55 70 78 88 98 104 114 176

0.125 65 88 96 104 112 122 142 203

0.25 85 113 125 137 148 159 184 270

0.4 109 141 158 174 190 206 237 339

Table 22: Security of LPN against Gaussian elimi-
nation

τ
k

256 384 448 512 576 640 768 1280
1√
k

49 56 59 62 64 67 70 85

0.05 44 56 61 66 71 77 87 127

0.125 75 102 115 127 140 153 178 279

0.25 133 188 215 242 269 296 350 565

0.4 218 314 362 409 457 504 600 979

Table 23: Security of LPN against Covering codes

τ
k

256 384 448 512 576 640 768 1280
1√
k

44 55 59 64 70 73 85 123

0.05 42 54 59 65 72 78 88 132

0.125 52 67 74 82 89 96 109 161

0.25 70 87 96 106 115 125 139 204

0.4 94 110 123 136 149 161 179 281

As we have shown, there still remains a small gap between the theoretical and practical results for the algo-
rithms we analysed. It thus seems reasonable to take a safety margin when selecting parameters to achieve a certain
level of security.

Based on this analysis, we could recommend the LPN instances LPN512,0.25, LPN640,0.125, LPN1280,0.05 or
LPN1280, 1√

1280
to achieve 80 bit security for different noise levels. We note that the value LPN768,0.05 that Levieil

and Fouque suggest as a secure instance to use actually offers only 66 bit security and thus is not recommended.

7 Conclusion

In this article we have analysed and presented the existing LPN algorithms in a unified framework. We introduced
a new theoretical analysis and this has improved the bounds of Levieil and Fouque [35]. In order to give a complete
analysis for the LPN solving algorithms, we also presented three algorithms that use the advantage that the secret
is sparse. We analysed also the latest algorithm presented at Asiacrypt 2014. While the covering code and the
LF2 algorithms perform best in the general case where the Bernoulli noise parameter is constant, the Gaussian
elimination shows that for the sparse case scenario the length of the secret should be bigger than 1100 bits. Also,
we show that some values proposed by Leviel and Fouque are insecure in the sparse case scenario.
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B LF1 - full recovery of the secret

We provide here an example of the LF1 algorithm, for the LPN512,0.125 instance, where we recover the full secret. We provide the values of
a, b, n and time complexity to show that indeed the number of queries for the first iteration, dominates the number of queries needed later on.
Also, this shows that the time complexity of recovering the first block dominates the total time complexity. For LPN512,0.125, we obtain the
following values (See Table 24).

Table 24: Full secret recovery for the instance LPN512,0.125

i a b log2 n log2 t

1 7 74 76.59 88.43

2 7 63 65.68 77.29

3 7 54 61.52 72.91

4 6 54 56.32 67.28

5 6 45 47.32 58.02

6 6 37 39.37 49.80

7 6 31 34.98 45.14

8 5 31 33.00 42.66

9 5 25 27.02 36.36

10 5 20 22.56 31.56

11 5 16 21.01 29.67

12 4 16 17.72 25.79

13 4 12 14.89 22.51

14 3 12 13.30 20.19

15 2 11 11.38 17.36

16 2 6 9.26 14.10

17 1 5 8.30 11.69

The way one can interpret this table is the following: LF1 recovers first 74 bits by taking a = 7 and requiring 276.59 queries. The total
complexity of this step, i.e. the reduction, solving and updating operation, is of 288.43 bit operations. Next, LF1 solves LPN438,0.125 and
continues this process until it recovers the whole secret.

We can easily see that indeed the number of queries and the time complexity of the first block dominate the other values.
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