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But no one deploys ML models...




ML models are deployed in larger systems.
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https://developers.google.com/machine-learning/crash-course/production-ml-systems



https://developers.google.com/machine-learning/crash-course/production-ml-systems

What does this mean for adversarial ML?

»Part |: Evasion attacks might get harder

»Part II: New privacy attacks!



Part |: Evading ML systems.

90% Tabby Cat Adversarial noise 100% Guacamole

Evading Black-box Classifiers Without Breaking Eggs. Debenedetti, Carlini, Tramer. 2023 6



A realistic threat model



A realistic threat model: post bad stuff online.

blocked



A realistic threat model: post bad stuff online.

namesurname % @namesurname - lhr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci.
#Hashtag

A WARNING

NSFW

>




How? Black-box (query-based) attacks.
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How? Black-box

uery-based) attacks.

namesurname # @namesurname « Thr
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam

erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci.
#Hashtag

>
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How? Black-box (query-based) attacks.

blocked
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How? Black-box (query-based) attacks.

namesurname # @namesurname - lhr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci.

#Hashtag
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Query-based attacks are getting better.

Norm  Attack Total Queries Q¢otal
OPT 9,731

/. BOUNDARY 4,555
2 SIGN-OPT 2,873
HOPSKIPJUMP 1,752

¢ HOPSKIPJUMP 3,091
> RAYS 328

median queries to reach a £, distance of 10 and £.. distance of 8/255 on untargeted ImageNet



s the number of queries the right metric?

Norm  Attack @al Queries (3@

OPT 9,731

0 BOUNDARY 4,555
SIGN-OPT 2,873
HOPSKIPJUMP 1,752

/ HOPSKIPJUMP 3,091
> RAYS 328

median queries to reach a £, distance of 10 and £.. distance of 8/255 on untargeted ImageNet



A real ML system uses monitoring.
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Some queries are more expensive than others.

blocked —| R\~ Account suspended

Twitter suspends accounts which violate the Twitter Rules
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Our goal

“stealthy” attacks.

namesurname # @namesurname « 1hr

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismed tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci.
#Hashtag
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Our attacks ensure most queries are on the
“good” side of the boundary.

Prior attacks Our stealthy attacks
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Inspiration: dropping eggs from buildings.
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See paper for details!
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Our stealthy attacks make fewer “bad”
gueries, but many more “good” queries.
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Our stealthy attacks make fewer “bad”

gueries, but many more “good” queries.

Evading Black-box Classifiers Without Breaking Eggs

Edoardo Debenedetti (ETH Zurich), Nicholas Carlini (Google), Florian Tramér (ETH Zurich)

Code to reproduce results of the paper "Evading Black-box Classifiers Without Breaking Eggs".

Leaderboard

https://github.com/ethz-spylab/realistic-adv-examples
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https://github.com/ethz-spylab/realistic-adv-examples

Take-away (Part 1).

» Black-box (query-based) attacks are not practical.
» Existing attack optimize for the wrong metric
» Stealthy attacks come at a high cost

» Optimizing this new metric might require
fundamentally new ideas!



Part II: New privacy attacks.

Training Set Training Set Filter Filtered Set
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Privacy Side Channels in Machine Learning Systems. Debenedetti et al. 2023



Example: stateful defenses against query attacks.

Chen et al. 2019, Li et al. 2022

Many of these queries are very similar!
This is an attack!!!

i
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The issue: Sybil attacks.




“Solution™: global query log.




The new issue: cross-user query leakage.

LA

honest user sends a sensitive query to the model




The new issue: cross-user query leakage.

attacker can detect if their query is similar!




This is a side-channel attack.

» more attacks in our paper...

X in training set
20
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Membership leakage Data extraction from “Breaking”
from deduplication... memorization filters... Differential Privacy...
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Conclusion.

» Study the security of ML systems, not just models.

» Current attacks make unrealistic assumptions
about the system

» System components are an underexplored attack surface
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