Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them

Florian Tramèr Stanford University, Google, ETHZ

ML suffers from adversarial examples.

Robust classification is hard!

Can we solve an *easier* problem?

Computationally robust classification

Randomized robust classification

Robust transductive classification

Can we solve an *easier* problem?

Computationally robust classification

Randomized robust classification

Robust transductive classification

Are these relaxed problems truly easier?

Ψ^{*}∇Ψ_Ψ∇Ψ^{*}) $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ $\langle f \rangle = \int_{VV} \psi^{*}(r,t) \hat{f} \psi(r,t) dV = \langle \psi | \hat{f} | \psi \rangle \qquad h = \frac{h}{2\pi}$ $\sqrt{\frac{h}{m\omega}}$ $V(x) = \frac{1}{2}m\omega^2 x^2$ $\frac{1}{2} - \chi_{m\omega} = \chi_{m\omega} =$ $\Delta x = \langle x^2 \rangle - \langle x \rangle$ Ψ(r,t)=Ψ(r)Ψ(t) $\nabla \psi(r) + \sqrt{(r)} \psi(r) = \mathcal{E} \psi(r) \quad \psi(t) = e^{-i\mathcal{E}t/t}$

Robust classification

ON EVALUATING ADVERSARIAL ROBUSTNESS	MadryLab / mnist_challenge
Nicholas Carlini ¹ , Anish At Dimitris Tsipras ² , Ian Good A standardized benchmark for adversarial robustness	
RobustML	NIPS 2017: Defense Against Adversarial Attack Create an image classifier that is robust to adversarial attacks

Are these relaxed problems truly easier?

 $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ $\psi^{*}(r,t) \hat{f} \psi(r,t) dV = \langle \psi | \hat{f} | \Psi \rangle \qquad h = \frac{h}{2\pi} \qquad R = \frac{A_{z}^{*} A_{z}}{A_{z}^{*} A}$ $\psi_{0}(Q) = \frac{1}{2\pi} e^{-Q}$ $\psi(r,t) = \psi(r) \varphi(t)$

Robust classification

-4x +7 = 15

Robust detection

If YES: promising direction for useful robustness!

If NO: we shouldn't expect a breakthrough...

Detecting adversarial examples is as hard as classifying them!

What's a hardness reduction?

What's a hardness reduction?

Hardness reductions for robustness.

11

Detecting adversarial examples is as hard as classifying them!

Detecting adversarial examples is (nearly) as hard as classifying them!

- efficient
- \succ robust at distance ε

 $\geq inefficient (at inference) \\ \geq robust at distance \frac{\varepsilon}{2}$

Main technical tool: Minimum Distance Decoding

<u>Interpretation #1:</u> *information theoretically* robust detection = robust classification

- Same sample complexity [Schmidt et al., 2018]
- Same accuracy-robustness tradeoffs [Tsipras et al., 2019, Zhang et al., 2019]
- Same *multi-robustness tradeoffs* [T & Boneh, 2019, Maini et al., 2020]
- Same connection with *error on noise* [Ford et al., 2020]

Interpretation #2: robust detectors imply a breakthrough in robust classification.

Interpretation #2: robust detectors imply a breakthrough in robust classification.

Can we build much more robust classifiers in **World 2**? (we don't know...)

Interpretation #2: robust detectors imply a breakthrough in robust classification.

Can we build much more robust classifiers in **World 2**? (we don't know...)

But any sufficiently robust detector implies a positive answer!

Many detectors *implicitly* claim such a breakthrough!

Many detectors *implicitly* claim such a breakthrough!

Many detectors *implicitly* claim such a breakthrough!

Optimistic interpretation: this is an *actual breakthrough* in (inefficient) robust classification!

Pessimistic (*realistic?*) interpretation: These detectors are *not robust!*

Conclusion.

(Ψ^{*}∇Ψ_Ψ∇Ψ^{*}) $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ $\langle f \rangle = \int_{\Delta W} \psi^{\dagger}(\mathbf{r},t) f \psi(\mathbf{r},t) dV = \langle \psi | \hat{f} | \psi \rangle \quad f = \frac{h}{2\pi}$ $R = \frac{A_2^* A_2}{A_1^* A_1}$ $V(x) = \frac{1}{2}m\omega^2 x^2$ E= 2 $|\Psi\rangle = \sum_{n=1}^{n} a_n |n\rangle$ hmw $\hat{\xi} = i\hbar \frac{\partial}{\partial t} \qquad \psi_0(Q) = \frac{1^{N_0}}{\pi} e^{-Q^2}$;t)=|ψ|²=Ψ^{*}(r;t)Ψ(r;t) <u>〈Ψ</u>|Ψ〉 $\Delta x = \langle x^2 \rangle - \langle x \rangle^2$ ∆px∆x≥t/2 -ih⊽ E=hw $\psi(r,t) = \psi(r) \varphi(t)$ $Q = X/L \langle A \rangle = \sum |a_n|^2 A_n$ $-\frac{\hbar^{2}}{2m}\nabla^{2}\psi(r) + V(r)\psi(r) = \mathcal{E}\Psi(r) \quad \Psi(t) = e^{-i\mathcal{E}t/\hbar}$ -2/h St |p(x)|dx _2/1

Robust classification

Conclusion.

Ψ^{*}∇Ψ_Ψ∇Ψ^{*}) $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ $\langle f \rangle = \int_{VV} \psi^{*}(r;t) \hat{f} \psi(r;t) dV = \langle \psi | \hat{f} | \psi \rangle \qquad h = \frac{h}{2\pi} \qquad R = \frac{A_{2}^{*}A_{2}}{A_{1}^{*}A_{1}}$ $= \sqrt{\frac{h}{m\omega}} \qquad V_{(x)} = \frac{4}{2}m\omega^{2}x^{2} \qquad C_{0}^{-\frac{h}{2}} \frac{h}{2} \qquad R = \frac{A_{2}^{*}A_{2}}{A_{1}^{*}A_{1}}$ $r,t) = |\psi|^{2} = \psi^{*}(r;t)\psi(r;t) \qquad \hat{E} = ih\frac{\partial}{\partial t} \qquad \psi_{0}(Q) = \frac{4^{N}}{2\pi}e^{-Q^{2}}$ $\hat{P} = -ih\nabla \qquad \Delta P_{x}\Delta x \ge h/2 \qquad \Delta x = \langle x^{2}\rangle - \langle x \rangle^{2}$ E=hw $\psi(r,t) = \psi(r) \varphi(t)$ $Q = \frac{X}{L} \langle A \rangle = \sum |a_n|^2 A_n$ $\frac{\hbar^2}{2m} \nabla^2 \psi(\mathbf{r}) + V(\mathbf{r}) \psi(\mathbf{r}) = \mathcal{E} \psi(\mathbf{r}) \quad \psi(\mathbf{t}) = e^{-i\mathcal{E}\mathbf{t}/\hbar}$ -2/h S |p(x)|dx -2/#

Robust classification

 $(\Psi \nabla \Psi - \Psi \nabla \Psi^*)$ $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ $\langle f \rangle = \int_{VV} \Psi^{*}(r,t) f \Psi(r,t) dV = \langle \Psi | f | \Psi \rangle \qquad \hbar = \frac{h}{2\pi}$ $\frac{h}{m\omega} \qquad V(x) = \frac{1}{2} m\omega^{2}x^{2} \qquad C_{0} = \frac{\pi\omega}{2} \qquad h$ $R = \frac{A_2^* A_2}{A_1^* A_1}$ $\sqrt{\frac{h}{m\omega}} \quad \mathcal{K} = \frac{1}{2} m\omega^{2} x^{2} \quad \mathcal{L}_{0}^{-\frac{1}{2}} \qquad \mathcal{K} = \frac{1}{A_{1}^{*}A_{1}}$ $\frac{1}{A_{1}^{*}} = |\psi|^{2} = \psi^{*}(r,t)\psi(r,t) \quad \hat{\mathcal{L}} = i\hbar\frac{\partial}{\partial t} \qquad \psi_{0}(Q) = \frac{1}{2} \frac{1}{R} e^{-Q^{2}}$ p=-ihV _px dx≥h/2 $\Delta x = \langle x^2 \rangle - \langle x \rangle^2$ E=hw $\psi(r,t) = \psi(r) \varphi(t)$ $Q = X/L \langle A \rangle = \sum |a_n|^2 A$ $\nabla \Psi(\mathbf{r}) + V(\mathbf{r}) \Psi(\mathbf{r}) = \mathcal{E} \Psi(\mathbf{r}) \quad \Psi(\mathbf{t}) = e^{-i\mathcal{E}\mathbf{t}/\mathbf{t}}$

Conclusion.

σΨ_ΨσΨ* $\Psi_n(Q) = A_n H_n(Q) e^{-Q^{2/2}}$ (r,t)fy(r,t)dV=(4)f14> $h = \frac{h}{2\pi}$ $\psi_0(Q)$ Ap. Ax≥h/2 $\pm 1/(r) \psi(r) = \mathcal{E} \psi(r)$ φ(t)=e

Robust classification

VW-ΨVΨ* $\Psi_n(Q) = A_n H_n(Q) e^{-Q^2}$ $\psi^*(r,t)\hat{f}\psi(r,t)dV = \langle \psi|\hat{f}|\psi \rangle$ Ê=ihðt ψ₀(Q)

Robust detection

Reductions/separations for other "easier" approaches to robustness?

https://arxiv.org/abs/2107.11630

https://floriantramer.com