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Defense<> Theorem, Evaluation< Proof.

Theorem 7.7. P # NP.

Proof. Consider the solution space of k-SAT in the d1RSB phase for k > 8 as recalled in Section.5.2.1.
We know that for high enough values of the clause density a, we have O(n) frozen variables
in almost all of the exponentially many clusters. Let us consider the situation where these clus-
ters were generated by a purported LFP algorithm for k-SAT. However, when exponentially
many solutions have been generated from distributions having the parametrization of the ENSP
model, we will see the effect of conditional independencies beyond range poly(logn). Let aBy
be a representation of the variables in cliques ¢, 8 and +, then given a value of 3, we will see
independent variation over all their possible conditional values in the variables of a and ~. If
each set of such variables has scope at most poly(logn), then this means that once more than
crely(logn) ¢ > 1 many distinct solutions are generated, we have non-trivial conditional distri-
butions conditioned upon values of 3 variables (this factor accounts for the possible orderings
within the poly(logn) variables as well). At this point, the conditional independence ensure
that we will see cross terms of the form

a1 a3z a1 87 azfBm.

Note that since O(n) variables have to be changed when jumping from one cluster to another,
we may even chose our poly(logn) blocks to be in overlaps of these variables. This would
mean that with a poly(log n) change in frozen variables of one cluster, we would get a solution
in another cluster. But we know that in the highly constrained phases of d1RSB, we need O(n)
variable flips to get from one cluster to the next. This gives us the contradiction that we seek. W
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6 ADAPTIVE ATTACK EVALUATION

Given that our proposed defense effectively prevents existing black-
box attacks, we now study whether or not it can prevent more
sophisticated attacks. We find that while it is possible to degrade
the effectiveness of the defense, we can not defeat it completely.
We study three categories of attacks: gradient attacks (specifically,
variants of NES with various kinds of query blinding), boundary-
following attacks (specifically, variants of the boundary attack with
query blinding), and hybrid attacks (which combine gradient attacks
with a surrogate model).

6.1 The NES Attack

We use the NES attack as one starting point for attacking our
scheme. To generate a targeted adversarial example a given in-
put x, NES generates an adversarial example by seeding it with an
image x’ of the target class (ie., that is already adversarial). NES
then uses projected gradient descent to slowly reduce the distor-
tion between this image (which is already the target class) and the
original example x until it is within € of the original image, while
still being classified as the target class.

In order to estimate the gradient at any given location x, NES
uses finite differences on a random Gaussian basis. Full details can
be found in [22], but simplified, the gradient is estimated by: (1)
sampling n instances of Gaussian noise &,.. ., 8p ~ N(0,1) and
adding them each to x as §; = x + 0§ to generate n basis points, (2)
for each basis point 6, estimating the confidence scores at 8;, (3)
estimating the gradient at x using these estimated confidence scores
and then taking a step in the direction of the estimated gradient.
The confidence score at §; is estimated by querying the labels for s
points near 6; chosen randomly from a sampling ball of L, radius y
and computing the proportion of each class as the estimate for that
class’s confidence score. The default attack parameters for NES are
a = 0.001,n = 4,5 = 50, y = 0.001, and learning rate = 0.01 [22];
we consider below how to adjust them.

6.1.2  Query Blinding. The second natural modification is for an
attacker to use query blinding to transform each query, as described
previously. In particular, we modify the confidence score estimation
procedure (step 2 from the previous attack description) to sample
s points using the different transformations listed in Section 5.1
instead of sampling from a £s ball of uniform radius. The parame-
ters for each transformation are normalized so that the expected €2
di ion from each ion is equal to 2.32; exact values
are given in Appendix B. We selected a constant of 2.32 to match
the ¢; distortion of setting y = 0.064. (Note that y is now only
applicable when using the original strategy of sampling from a ball
of € radius p). We used the same parameters when training the
similarity encoder.

When running the NES attack, each time we query the classifier
we preprocess the image with one strategy. We use default parame-
ter values for the NES attack, except we set s = 2 to make it harder
to detect. Table 2 shows the effectiveness of different transforma-
tions. For some transformations, like uniform and Gaussian noise,
the NES attack fails completely. However, the NES attack works
even better with brigh and pixel-scal ions than
the original confidence estimation procedure of uniform noise. This
suggests that estimating the confidence score for an image may be
more accurate with certain image transformations than others.

For all transformations, each attack will trigger at least one hun-
dred detections (on average), so our defense is effective at detecting
these query blinding attacks. The exact attacker cost corresponding
to this number of detections is quantified further in Section 7.

For this level of fi ion di the similarity encoder
offers little benefit over ¢, distance on images. This is understand-
able, as for k = 50, the £2 detection threshold is § = 5.069 when
using £, distance on images, which is greater than the £; distortion
of 2.32 introduced by these transformations. We also evaluated
against attacks that use transformations that introduce a greater
distortion. Specifically, we increase o to ¢ = 0.01 (the highest value
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SoK: How Robust is Image Classification Deep

Neural Network Watermarking?
Adversarial Examples Are Not Easily Detected: (Extended Version)

Bypassing Ten Detection Methods

Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum

Nicholas Carlini David Wagner
University of California, Berkeley

Jdbfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples

On Adaptive Attacks

to Adversarial EX&mple Defenses Anish Athalye”' Nicholas Carlini “?> David Wagner >
Florian Trameér* Nicholas Carlini* Wieland Brendel*
Stanford University Google University of Tiibin
Aleksander Madry . . . . .
MIT Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse

Parameter-free Attacks

Francesco Croce! Matthias Hein !




What's next? Breaking

100 defenses?

SoK: How Robust is Image Classification Deep

Adversarial Examples Are Not Easily Detected:
Bypassing Ten Detection Methods

[ ]

Neural Network Watermarking?
| 11 defenses i

Nils Lukas, Edward Jiang, Xinda Li, Florian Kerschbaum

Jdbfuscated Gradients Give a False Sense of Security:

Circumventing Defenses to Adversarial Examples

On Adaptive Attacks
to Adversarial Example Defenses

{ )

L )

Florian Tr Brendel
Stanford Un{ 1 3 d efe nses of T1iibin

MIT Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse

Parameter-free Attacks

35 defenses

SR
—




This Is not how we refute theorems!

[ Theorem 7.7. P # NP. ] «

Here's an efficient algorithm for 3-SAT!



Instead, we just refute the proof.

Proof. Consider the solution space of k-SAT in the d1RSB phase for k > 8 as recalled in Section.5.2.1.
We know that for high enough values of the clause density «, we have O(n) frozen variables
in almost all of the exponentially many clusters. Let us consider the situation where these clus-
ters were generated by a purported LFP algorithm for k-SAT. However, when exponentially
many solutions have been generated from distributions having the parametrization of the ENSP
model, we will see the effect of conditional independencies beyond range poly(log n). Let afy
be a representation of the variables in cliques a, 3 and v, then given a value of 3, we will see
independent variation over all their possible conditional values in the variables of o and ~. If
each set of such variables has scope at most poly(logn), then this means that once more than
cpoly(logn) ¢ > 1 many distinct solutions are generated, we have non-trivial conditional distri-
butions conditioned upon values of 3 variables (this factor accounts for the possible orderings
within the poly(logn) variables as well). At this point, the conditional independence ensure
that we will see cross terms of the form

a1 87 a2 1372 azf37.

Note that since O(n) variables have to be changed when jumping from one cluster to another,
we may even chose our poly(logn) blocks to be in overlaps of these variables. This would
mean that with a poly(log n) change in frozen variables of one cluster, we would get a solution
in another cluster. But we know that in the highly constrained phases of d1RSB, we need O(n)
variable flips to get from one cluster to the next. This gives us the contradiction that we seek. W

There’s a flaw in line 637...
REJECT!



Similarly, we should focus on refuting ML

efense evaluations.

This evaluation is
unconvincing because...
onclusion: NOT ROBUST

6 ADAPTIVE ATTACK EVALUATION

Given that our proposed defense effectively prevents existing black-
box attacks, we now study whether or not it can prevent more
sophisticated attacks. We find that while it is possible to degrade
the effectiveness of the defense, we can not defeat it completely.
We study three categories of attacks: gradient attacks (specifically,
nts of NES with various kinds of query blinding), boundary-
following attacks (specifically, variants of the boundary attack with
query blinding), and hybrid attacks (which combine gradient attacks
with a surrogate model).

6.1 The NES Attack

We use the NES attack as one starting point for attacking our
scheme. To generate a targeted adversarial example a given in-
put x, NES generates an adversarial example by seeding it with an
image x’ of the target class (i.e., that is already adversarial). NES
then uses projected gradient descent to slowly reduce the distor-
tion between this image (which is already the target class) and the
original example x until it is within € of the original image, while
still being classified as the target class.

In order to estimate the gradient at any given location x, NES
uses finite differences on a random Gaussian basis. Full details can
be found in [22], but simplified, the gradient is estimated by: (1)
sampling n instances of Gaussian noise &y,...,8, ~ N(0,1) and
adding them each to x as §; = x + 0§ to generate n basis points, (2)
for each basis point 8;, estimating the confidence scores at 8;, (3)
estimating the gradient at x using these estimated confidence scores
and then taking a step in the direction of the estimated gradient.
The confidence score at §; is estimated by querying the labels for s
points near 6; chosen randomly from a sampling ball of L, radius
and computing the proportion of each class as the estimate for that
class’s confidence score. The default attack parameters for NES are
a = 0.001,n = 4,5 = 50, y = 0.001, and learning rate = 0.01 [22];
we consider below how to adjust them.

6.1.2  Query Blinding. The second natural modification is for an
attacker to use query blinding to transform each query, as described
previously. In particular, we modify the confidence score estimation
procedure (step 2 from the previous attack description) to sample
s points using the different transformations listed in Section 5.1
instead of sampling from a £, ball of uniform radius. The parame-
ters for each transformation are normalized so that the expected 2
d from each is equal to 2.32; exact values
are given in Appendix B. We selected a constant of 2.32 to match
the ¢, distortion of setting y = 0.064. (Note that y is now only
applicable when using the original strategy of sampling from a ball
of €o radius u). We used the same parameters when training the
similarity encoder.

When running the NES attack, each time we query the classifier
we preprocess the image with one strategy. We use default parame-
ter values for the NES attack, except we set s = 2 to make it harder
to detect. Table 2 shows the effectiveness of different transforma-
tions. For some transformations, like uniform and Gaussian noise,
the NES attack fails completely. However, the NES attack works
even better with brightness and pixel-scale transformations than
the original confidence estimation procedure of uniform noise. This
suggests that estimating the confidence score for an image may be
more accurate with certain image transformations than others.

For all transformations, each attack will trigger at least one hun-
dred detections (on average), so our defense is effective at detecting
these query blinding attacks. The exact attacker cost corresponding
to this number of detections is quantified further in Section 7.

For this level of transformation distortion, the similarity encoder
offers little benefit over ¢, distance on images. This is understand-
able, as for k = 50, the £z detection threshold is § = 5.069 when
using ¢, distance on images, which is greater than the £; distortion
of 2.32 introduced by these transformations. We also evaluated
against attacks that use transformations that introduce a greater
distortion. Specifically, we increase o to & = 0.01 (the highest value




What makes an evaluation convincing?

6 ADAPTIVE ATTACK EVALUATION

Given that our proposed defense effectively prevents existing black-
box attacks, we now study whether or not it can prevent more
sophisticated attacks. We find that while it is possible to degrade
the effectiveness of the defense, we can not defeat it completely.
We study three categories of attacks: gradient attacks (specifically,
variants of NES with various kinds of query blinding), boundary-
following attacks (specifically, variants of the boundary attack with
query blinding), and hybrid attacks (which combine gradient attacks
with a surrogate model).

6.1 The NES Attack

We use the NES attack as one starting point for attacking our
scheme. To generate a targeted adversarial example a given in-
put x, NES generates an adversarial example by seeding it with an
image x’ of the target class (i.e., that is already adversarial). NES
then uses projected gradient descent to slowly reduce the distor-
tion between this image (which is already the target class) and the
original example x until it is within € of the original image, while
still being classified as the target class.

In order to estimate the gradient at any given location x, NES
uses finite differences on a random Gaussian basis. Full details can
be found in [22], but simplified, the gradient is estimated by: (1)
sampling n instances of Gaussian noise dy,...,8, ~ N(0,1) and
adding them each to x as §; = x + 0'§; to generate n basis points, (2)
for each basis point 6, estimating the confidence scores at 8, (3)
estimating the gradient at x using these estimated confidence scores
and then taking a step in the direction of the estimated gradient.
The confidence score at 8; is estimated by querying the labels for s
points near 6; chosen randomly from a sampling ball of L, radius y
and computing the proportion of each class as the estimate for that
class’s confidence score. The default attack parameters for NES are
@ =0.001,n = 4,5 = 50, y = 0.001, and learning rate = 0.01 [22];
we consider below how to adjust them.

6.1.2  Query Blinding. The second natural modification is for an
attacker to use query blinding to transform each query, as described
previ In particular, we modify the confid imati
procedure (step 2 from the previous attack description) to sample
s points using the different transformations listed in Section 5.1
instead of sampling from a £, ball of uniform radius. The parame-
ters for each transformation are normalized so that the expected €2
d ion from each fc is equal to 2.32; exact values
are given in Appendix B. We selected a constant of 2.32 to match
the ¢; distortion of setting y = 0.064. (Note that y is now only
applicable when using the original strategy of sampling from a ball
of €o radius ). We used the same parameters when training the
similarity encoder.

When running the NES attack, each time we query the classifier
we preprocess the image with one strategy. We use default parame-
ter values for the NES attack, except we set s = 2 to make it harder
to detect. Table 2 shows the effecti of different fi
tions. For some transformations, like uniform and Gaussian noise,
the NES attack fails completely. However, the NES attack works
even better with brigh and pixel-scal f ions than
the original confidence estimation procedure of uniform noise. This
suggests that estimating the confidence score for an image may be
more accurate with certain image transformations than others.

For all transformations, each attack will trigger at least one hun-
dred detections (on average), so our defense is effective at detecting
these query blinding attacks. The exact attacker cost corresponding
to this number of detections is quantified further in Section 7.

For this level of fi ion di ion, the similarity encoder
offers little benefit over ¢, distance on images. This is understand-
able, as for k = 50, the £2 detection threshold is § = 5.069 when
using £, distance on images, which is greater than the £, distortion
of 2.32 introduced by these f ions. We also evaluated
against attacks that use transformations that introduce a greater
distortion. Specifically, we increase o to ¢ = 0.01 (the highest value
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What makes a proof convincing?
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If you take nothing else from this blog: quantum computergwon t
solve hard problems instantly by justtrying all solutions in parallel. 60.? /

% Also, next pandemic, let's approve the vaccines faster! 3

« Special entry for you, my friend Volume 4 is already written (in our hearts) »

Ten Signs a Claimed Mathematical Breakthrough is Wrong
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Ten Signs a Claimed Mathematical Breakthrough is Wrong

The authors don’t use TeX.

The authors don’t understand the question.

The approach seems to yield something much stronger and maybe even false.
The approach conflicts with a known impossibility result.

The authors themselves switch to weasel words by the end.

The paper jumps into technicalities without presenting a new idea.

The paper doesn’t build on (or in some cases even refer to) any previous work.

The paper wastes lots of space on standard material.
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The paper waxes poetic about “practical consequences”.

10. The techniques just seem too wimpy for the problem at hand.
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Ten Signs a Claimed Mathematical Breakthrough is Wrong

| 1. The authors don’t use TeX. ‘

Some of these don'’t
really apply to ML...

Theorem 1.1.1.
For every algorithm w, which solves the OWMF (F ) problem,
the computational complexity of w is at least
floor (floor24-"75 7 (27 + 23 + 1)) / 2).
Proof:
Ad absurdum, suppose there is an algorithm ® which solves the OWMF(F) problem, such
that, the computational complexity of @ is less than
floor (floor29 2 / 223+ 23+ 1)) / 2).
By Lemma 1.1.6.
| PossibleOnOne(oy ) | > floor(29" 3 / 222+ 23 + 1)),
and, by definition
| AllPossible | = | PossibleOnOne(ay ) |
or
| AllPossible | = floor( | PossibleOnOne(at ) | / 2).
Therefore, a priori, there is at least one element n in AllPossible such that, n is not
checked by the algorithm ® and no operation is performed instead.
The algorithm ® solves the OWMEF(F) problem and as a result, for the unchecked n, it has
been decided if n is a solution to the problem or not.
Thus, by Lemma 1.1.1. (if n is a solution) or by Lemma 1.1.7. (if n is not a solution),
@, L-by) =1,
and/or the divisibility of
((I,-by)n" = 1) byn,
have been decided ( by the algorithm ®) without performing any operation.
By Lemma 1.1.9. and/or by Lemma 1.1.10. such a decision is impossible without
performing at least one operation.
As a result, the supposition that there is an algorithm ® which solves the OWME(F)
problem, such that, the computational complexity of ® is less than
floor (floor291 2 / 223+ 23 + 1))/ 2),

is false.

13



Four Robustness

Tty Signs a Claimed Malhex@atical Breakthrough is Wrong

1. There is no proof.

'CTRL +| E adaptive

this paper’s adaptive evaluation

is actually 6x longer than its
non-adaptive evaluation ©

4 NON-ADAPTIVE EVALUATION

Having described our defense proposal, we begin by demonstrating
that it has at least some potential utility: it effectively detects exist-
ing (unmodified) black-box query attacks. While there are many
black-box (hard-label) attacks, they fall roughly into two categories:

o Gradient estimation attacks at their core operate like stan-
dard white-box gradient-based attacks (as described in Sec-
tion 2.1). However, because they do not have access to the
gradient, these types of attacks instead estimate the gradient
by repeatedly querying the model.

* Boundary following attacks, in contrast, first identify the
decision boundary of the neural network, at a potentially
far-away point, and then take steps following the boundary
to locate the nearest point on the boundary to the target
image.

We evaluate against one representative attack from each category.

4.1 Attack Setup

For each attack studied, we use the targeted variant, where the
adversary generates an adversarial example chosen so that the
resulting adversarial example x is classified as a target class t and
is within a distance € of an original image x. The original image
and target class are chosen randomly. We call an attack successful
if the £ distortion is below ¢ = 0.05. While most white-box work
on CIFAR-10 considers the smaller distortion bound of ¢ = 0.031 ~
8/255, we choose this slightly larger distortion because black-box
attacks are known to be more difficult to generate and so we give
the adversary slightly more power to compensate.

NES [22] is one of the two most prominent gradient-estimation
attacks (along with SPSA [39]). It estimates the gradient at a point
by averaging the confidence scores of randomly sampled nearby
points, and then uses projected gradient descent [30] to perturb an
image of the target class until it is sufficiently close to the original
image. In the hard label case, the confidence score for a point is

approximated by taking a Monte Carlo sample of nearby points,
and then computing the score for a class as the fraction of nearby
oints with that class.

( 6 ADAPTIVE ATTACK EVALUATION \

Given that our proposed defense effectively p ts existing black-

box attacks, we now study whether or not it can prevent more
sophisticated attacks. We find that while it is possible to degrade
the effectiveness of the defense, we can not defeat it completely.
We study three categories of attacks: gradient attacks (specifically,
variants of NES with various kinds of query blinding), boundary-
following attacks (specifically, variants of the boundary attack with
query blinding), and hybrid attacks (which combine gradient attacks

\with a surrogate model). )

“sanity checks
that the theorem
isn’t completely
wrong...”

“actual proof!”
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Four Robustness

Tty Signs a Claimed Malhex@atical Breakthrough is Wrong

1. There is no proof. |

Proof. The proof will be released upon paper acceptance.
H

reproducible evaluation
CTRL < F code

pretrained models
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Four Robustness

Tty Signs a Claimed Malhex@atical Breakthrough is Wrong

2. There are many proofs. ‘

We first present multiple adaptive attacks

various strong adaptive attacks lllevaluate 7 potential adaptive attacks
a variety of strong adaptive attacks,

A strong evaluation should be about quality, not quantity



Ten Signs a Claimed Mathematical Breakthrough is Wrong \

3. The approach seems to yield something much stronger and maybe even false. ‘

(x1V x5V x3) A (mx1V =x2 V xy) A (mx3V —x, V x7) (x1V x3) A (=x1V x3) A (=x3V x5)
Theorem: 3-SAT & P Theorem: 2-SAT & P

T

If the proof still works
for a theorem that is false,
there is clearly something wrong!
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Four Robustness

Tag Signs a Claimed Malbedatical Breakthrough is Wrong

3. The approach seems to yield something much stronger and maybe even false.

is robust > isrobust

If the evaluation still passes (an attacks faiy
for a defense that is broken,
there is clearly something wrong!

18



Building a minimally-altered, broken defense:
the binarization test.
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“Increasing Confidence in Adversarial Robustness Evaluations”, Zimmermann et al., https://arxiv.org/abs/2206.13991 19




Building a minimally-altered, broken defense:
the binarization test.
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Building a minimally-altered, broken defense:
the binarization test.
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If the evaluation were strong
it would break the non-robust defense

“Increasing Confidence in Adversarial Robustness Evaluations”, Zimmermann et al., htips://arxiv.org/abs/2206.13991 21




The binarization test identifies flawed
evaluations.

Original * = Fegs T > _ y
Evaluation™® A
Failed | Passed

[ 1
Re- 0!
Evaluation,

0.00 0.20 0.40 0.60 0.80 0.951.00
Binarization Test Performance

13 defenses where the original evaluation overestimated robustness,
compared to a future re-evaluation

“Increasing Confidence in Adversarial Robustness Evaluations”, Zimmermann et al., https://arxiv.org/abs/2206.13991 22




Weak evaluations fail the test.

Original v
Evaluation F
Failed | Passed
Re- ” A * 0!
Evaluation, ‘ . : . —
0.00 0.20 0.40 0.60 0.80 0.951.00

Binarization Test Performance

“Increasing Confidence in Adversarial Robustness Evaluations”, Zimmermann et al., https://arxiv.org/abs/2206.13991 23




Strong adaptive evaluations (which broke
the defenses) pass the test.

Original * = &, i * - _ v
Evaluation™® A
Failed ed
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Evaluation, . . : 2 S
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Some adaptive attacks break defenses but
remain quite weak.

Original * = E S ¢ > _ y
R A
Evaluation A
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Our test can have false positives.

original evaluations are
not “completely wrong”

Original * = L S . ¢ > ° |
Evaluation™
Failed | PaSsed
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“Increasing Confidence in Adversarial Robustness Evaluations”, Zimmermann et al., htips://arxiv.org/abs/2206.13991 26




Four Robustness

Tty Signs a Claimed Malhex@atical Breakthrough is Wrong

| 3. The evaluation fails to break a non-robust defense.

A convincing evaluation should distinquish robust defenses from broken ones!
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Ten Signs a Claimed Mathematical Breakthrough is Wrong

4. The approach conflicts with a known impossibility result. |

Theorem:
Technique X
won't help you solve
P vs NP

RELATIVIZATIONS OF THE 2 =? /% QUESTION*

THEODORE BAKERY, JOHN GILL} anp ROBERT SOLOVAYY

Natural Proofs

Alexander A. Razborov*

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540; and
Steklov Mathematical Institute, Vavilova 42, 117966, GSP-1, Moscow, Russia

and

Steven Rudich’

Algebrization: A New Barrier in Complexity Theory

Scott Aaronson* Avi Wigderson'
MIT Institute for Advanced Study

28




Can we show such an impossibility result
for adversarial ML"?

Theorem:
Technique X
won’t help you build
a robust model
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One attempt: a barrier for detecting
adversarial examples.

N
Theorem:
Detecting attacks e
won'’t help you build
a robust model ey W=
abstain

“Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them”, ICML 2022, https://arxiv.org/abs/2107.11630 30




We show a reduction from robust detection
to classification.

Robust o Robust
detector classifier

100 100
80 80
60 60
40 40
20 20

0 0

Clean Adv. Clean Adv.
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We show a partial reduction from robust
detection to classification.

Robust o Robust
detector classifier

> efﬁCient > InefflCIent (at inference)
» robust at distance ¢ » robust at distance ¢/,



Strongly robust detectors imply a
breakthrough in robust classification.

100

e e e

inference 50

Clean

Adv.
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Strongly robust detectors imply a
breakthrough in robust classification.

100

inefficient
inference 50

0
Clean Adv.

Can we build much more robust classifiers in World 27
(we don’t know...)
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Strongly robust detectors imply a
breakthrough in robust classification.

100

inefficient
inference 50

0
Clean Adv.

Can we build much more robust classifiers in World 27
(we don’t know...)

But any sufficiently robust detector implies a positive answer!
35



Many detectors implicitly claim
such a breakthrought!
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3

robustness claims
from detector
defenses
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Many detectors implicitly claim

such a breakthrought!
100% ——
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Optimistic view: this is a breakthrough in

(inefficient) robust classification!
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Pessimistic (realistic?) view:
These detectors are not robust!
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Robust detection is as hard as classification.
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Robust detection is as hard as classification.
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Four Robustness

- D Signs a Claimed MathedGatical Breakthrough is Wrong

’4. Breakthrough results using only “weak” techniques.

denoisers,
preprocessors

randomness

detectors

provably weak! empirically weak
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Treat your ML defense like a theorem!

Defense evaluations that aren’t convincing are like theorems without proofs...

Four Robustness

o Signs a Claimed Matlem@gtical Breakthrough is Wrong

There is no adaptive attack (or no code). (no proof)
There are many partial adaptive attacks. (many proofs)

The evaluation fails to break a non-robust defense. (proof idea still holds for false theorems)

W NhPE

Breakthrough results using only “weak” techniques. (proof idea is believed/known to fail)
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