
Ensemble	Adversarial	Training	

Stanford	Security	Lunch	
May	17th	2017	

	
Florian	Tramèr	

	
Joint	work	with	Alexey	Kurakin,	Nicolas	Papernot,	

Dan	Boneh	&	Patrick	McDaniel	



Adversarial	Examples	in	ML	
Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

2	

(Goodfellow	et	al.	2015)	



Adversarial	Examples	in	ML	
•  Images		

Szegedy	et	al.	2013,	Nguyen	et	al.	2015,		
Goodfellow	et	al.	2015,	Papernot	et	al.	2016,		
Liu	et	al.	2016,	Kurakin	et	al.	2016,	…	

	

•  Physical-World	ARacks	 		
Sharif	et	al.	2016,	Kurakin	et	al.	2017	

	

•  Malware	 	 	 	 	 	 	 		
Šrndić	&	Laskov	2014,	Xu	et	al.	2016,		
Grosse	et	al.	2016,	Hu	et	al.	2017	

•  Text	Understanding	 	 		
Papernot	et	al.	2016	

•  Reinforcement	Learning	 		
Huang	et	al.	2017,	Lin	et	al.	2017,		
Behzadan	&	Munir	2017	

3	

(a) (b) (c) (d)

Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows S
A

(top) and S
B

(bottom) dodging
against DNN

B

. Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows S

A

impersonating Milla Jovovich (by Georges Biard
/ CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) S

B

impersonating S
C

; and (d) S
C

impersonating Carson Daly (by
Anthony Quintano / CC BY / cropped from https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by S
C

for dodging recog-
nition against DNN

B

.

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNN

C

; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to c

t

must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, S

B

’s success
rate when attempting to fool DNN

B

and impersonate S
C

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNN

B

, the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For N

I

images used in the optimizations and N
C

connec-
tions in the DNN, the time complexity of each GD iteration
is O(N

I

⇤N
C

). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.
We next briefly describe a commercial FRS that we use in

our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.
To train the Face++ model, we used the same training

data used for DNN
B

in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .



Threat	Model:	White-Box	ARacks	

4	

ML	Model	

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

bird	
tree	
plane	

Loss	

ground	truth	

“Fast	Gradient	Sign	Method”	(FGSM)	
Take	gradient	
of	the	loss	

r = ✏ · sign (r
x

J(x, y, ✓))



Threat	Model:	White-Box	ARacks	

5	

ML	Model	

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

bird	
tree	
plane	

(Goodfellow 2016)

Hypothetical Attacks on Autonomous Vehicles

Denial of service
Confusing object

Harm others

Adversarial input 
recognized as “open 
space on the road”

Harm self / passengers
Adversarial 
input 
recognized as 
“navigable 
road”

+	

krk1 = ✏

“Fast	Gradient	Sign	Method”	(FGSM)	

r = ✏ · sign (r
x

J(x, y, ✓))



(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

Threat	Model:	Black-Box	ARacks	

6	

ML	Model	

plane	

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

plane	

plane	

Adversarial	
Examples	
transfer	

ML	Model	

ML	Model	



Iterabve	ARacks	

7	

“One-Shot”	ARacks	 “Iterabve”	ARacks	

•  Computabonally	efficient	
•  Weaker	white-box	aRacks	

•  Transfers	with	high	
probability,	strong	black-
box	aRacks!	

•  More	Expensive	
•  Close	to	100%	success	rate	for	
impercepbble	perturbabons	

•  Overfits	to	model’s	
parameters	/	doesn’t	transfer	
very	well	



Defenses?	

•  Ensembles?	

•  Disbllabon?	

•  Generabve	modeling?		

•  Adversarial	training?	Lets	see…	

8	



Adversarial	Training	

9	

ML	Model	

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

bird	 Loss	

ML	Model	

plane	 Loss	

take	gradient	



Does	it	Work?	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		

IteraLve	

10	



Does	it	Work?	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Mostly	yes!	

IteraLve	

11	



Does	it	Work?	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Mostly	yes!	

IteraLve	 Not	really	

12	



Does	it	Work?	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Mostly	yes!	

IteraLve	 Not	really	 But	they	don’t	
transfer	much	

13	



Does	it	Work?	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Mostly	yes!	 Not	really!	

IteraLve	 Not	really	 But	they	don’t	
transfer	much	

14	



ARacks	on	Adversarial	Training	

15	

1.0	
3.6	

18.2	

0	

5	

10	

15	

20	

Er
ro
r	R

at
e	

MNIST	

22.0	
26.8	

36.5	

0	
5	
10	
15	
20	
25	
30	
35	
40	

Er
ro
r	R

at
e	

ImageNet	(top1)	

Adversarial	examples	transferred	
from	another	model	



“Gradient	Masking”	

•  How	to	get	robustness	to	FGSM-style	aRacks?	

Large	Margin	Classifier	

Gradient	Masking	

16	



Loss	of	Adversarially	Trained	Model	

17	

Data	
Point	

Move	in	direcbon	of	
another	model’s	gradient		
(black-box	aRack)	

Adversarial	
Example	

Move	in	direcbon	
of	model’s	gradient		
(white-box	aRack)	

Non-Adversarial	
Example	



Loss	of	Adversarially	Trained	Model	

18	



Simple	ARack:	RAND+FGSM	

19	

1. Small	random	step	
2. Step	in	direcbon	of	gradient	

3.6	

34.1	

0	

20	

40	

FGSM		 RAND+FGSM	

Er
ro
r	R

at
e	

MNIST	

26.8	

64.3	

0	
20	
40	
60	
80	

FGSM	 RAND+FGSM	

Er
ro
r	R

at
e	

ImageNet	(top1)	



Does	it	Work?	(Before)	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Mostly	yes!	 Not	really!	

IteraLve	 Not	really	 But	they	don’t	
transfer	much	

20	



Does	it	Work?	(Now)	

Adversarial	
Training	

White-Box	
AGacks	

Black-Box		
AGacks	

One-Shot		 Not	really!	 Not	really!	

IteraLve	 Not	really	 But	they	don’t	
transfer	much	

21	

Security	against	white-box	aRacks	seems	out-of-reach.	
Black-box	security	might	be	sufficient.	Can	we	do	beRer?	



What’s	wrong	with	Adversarial	Training?	

•  Minimize	

22	

loss(x, y) + loss(x+ ✏ · sign(grad), y)

Small	if:	
1.  The	model	is	actually	robust	
2.  Or,	the	gradient	points	in	a	

direcBon	that	is	not	adversarial	
Degenerate	
Minimum	



Ensemble	Adversarial	Training	

•  How	do	we	avoid	these	degenerate	minima?	

23	

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

ML	Model	 (Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease 
probability 
of bird class

Still has same label (bird)

Loss	

ML	Model	

ML	Model	

pre-trained	



Results	

24	

0.7	

3.8	

15.5	

0.7	

6.0	

3.9	

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	

Clean	Data	 White-Box	FGSM	ARack	 Black-Box	FGSM	ARack	

Er
ro
r	R

at
e	

MNIST	(CNNs,	12	epochs)	

Adv.	Training	 Ensemble	Adv.	Training	

Source	model	for	
aRack	was	not	used	

during	training	

Less	white-box	FGSM	
samples	seen	during	

training	



Results	

25	

22.0	
26.8	

36.5	

23.6	

30.0	 30.4	

20.2	
25.9	 24.6	

0	
5	

10	
15	
20	
25	
30	
35	
40	

Clean	Data	 White-Box	FGSM	ARack	 Black-Box	FGSM	ARack	

Er
ro
r	R

at
e	

ImageNet	(IncepLon	v3,	IncepLon	ResNet	v2)	

Adv.	Training	 Ensemble	Adv.	Training	 Ensemble	Adv.	Training	(ResNet)	



What	about	stronger	aRacks?	

•  LiRle	to	no	improvement	on	white-box	
iterabve	and	RAND+FGSM	aRacks!	

•  But,	these	aGacks	don’t	transfer	well!	

26	

15.5	 13.5	
9.5	

3.9	 6.0	
2.9	

0	

10	

20	

FGSM		 I-FGSM	 RAND+FGSM	

Er
ro
r	R

at
e	

Black-Box	AGacks	on	MNIST	

Adv.	Training	 Ensemble	Adv.	Training	



What	about	stronger	aRacks?	

27	

36.5	
30.8	30.4	 29.9	

24.6	 25.0	

0.0	
5.0	

10.0	
15.0	
20.0	
25.0	
30.0	
35.0	
40.0	

FGSM		 RAND+FGSM		

Er
ro
r	R

at
e	

Black-Box	AGacks	on	ImageNet	

Adv.	Training	 Ensemble	Adv.	Training	 Ensemble	Adv.	Training	(ResNet)	



Efficiency	of	Ensemble	Adversarial	Training	

•  Pre-compute	gradients	for	pre-trained	models	
–  Lower	per-batch	cost	than	with	adversarial	training	

•  Randomize	source	model	in	each	batch	
–  If	num_models % num_batches = 0,	we	see	the	same	
adversarial	examples	in	each	epoch	if	we	just	rotate	

•  Convergence	can	be	much	slower	
Standard	Incepbon	v3: 	 	~150	epochs	
Adversarial	training: 	 	 	~190	epochs	
Ensemble	adversarial	training: 	~280	epochs	

28	

Maybe	because	
the	task	is	

actually	hard?...	



Takeaways	

•  Test	defenses	on	black-box	aRacks!	
–  Disbllabon	(Papernot	et	al.	2016,	aRack	by	Carlini	et	al.	2016)	
–  Biologically	Inspired	Networks		

(Nayebi	&	Ganguli	27	Mar.	2017,	aRack	by	Brendel	&	Bethge	5	Apr.	2017)	

–  Adversarial	Training,	and	probably	many	others…	

•  		
	
	

•  Ensemble	Adversarial	Training	vastly	improves	
robustness	to	black-box	aRacks	

29	

	
« If you don’t know where to go, just move at random. » 

	— Morgan Freeman — (or Dan Boneh)!
	



Open	Problems	

•  BeRer	black-box	aRacks?	
– How	much	does	oracle	access	to	the	model	help?	

•  More	efficient	ensemble	adversarial	training?	

•  Can	we	say	anything	formal	(and	useful)	about	
adversarial	examples?	

30	

THANK	YOU	


