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Smart Contract Security - The Prongs 
  

Formal Verification (+Specification) 
what are we building and how can we check it? 
 

Escape Hatches 
how can we react to the unforeseen? 
 

Bug Bounties 
how can we address perverse incentives? 
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We call this 
barrier ($C) an 
“exploit gap” 

… mind the gap! 
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Design Goals - The Perfect Bounty 
  

●  Attack or disclose, not both (atomic) 

 
●  Predetermined payout (verifiable) 

 
 

●  Trustless payout (censorship resistant + verifiable) 
 



Exploit Gap through Hydra Contracts 
  

Chen & Avizienis, ‘78 
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… Houston we have a gap 
(contracts have different bugs) 
  



… Houston we have no gap! Hydra fails! 
(all contracts have same bug, empirically rare?) 
  



… let’s bring back the 80’s! 
  



N-Version Programming Criticism 
  

●  Analysis assumes full independence of faults (correlations are annoying!) 

●  Knight-Leveson (‘86):  
« We reject the null hypothesis of full  
independence at a p-level of 5% » 

●  Eckhardt et al. (’91): 
 « We tried it at NASA and it wasn’t cost effective» 
 Worst-case: 3 versions = 4x fewer errors 



Cost, Availability & Reliability 
  

●  «Classical» N-Version Programming: Availability >> Reliability 
    -    Majority Voting: Always available, but may fail often 

●  Smart contracts: do we really car if it’s down for a while? 
    -    N-out-of-N agreement: better no answer than the wrong one 
    -    Empirically, there seem to be few « harmless » bugs 

●  Numbers from Eckhardt et al. look much better: 
    -    For 3 versions, 30 − 5087 times fewer failures 
         (but some loss in availability…) 
 



The DAO (obviously) [language] 
The “payout index without the underscore” ponzi (“FirePonzi”) [scam] 
The casino with a public RNG seed [spec] 
Governmental (1100 ETH stuck because payout exceeds gas limit) [programmer] 
5800 ETH swiped (by whitehats) from an ETH-backed ERC20 token [language] 
The King of the Ether game [language] 
Rubixi : Fees stolen because the constructor function had an incorrect name [prg] 
Rock paper scissors trivially cheatable because the first to move shows their hand [spec] 
Various instances of funds lost because a recipient contained a fallback function that 

consumed more than 2300 gas, causing sends to them to fail. [spec/pltfrm] 
Various instances of call stack limit exceptions. [programmer] 

 

In practice as well as theory - preventable bugs 
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/ 
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 6-8/10 ain’t bad 
(the rest are specification bugs or intentional backdoors).    



… so, the project  

●  Creation of trustless, decentralized bug bounty 
 

●  Increased security for mainnet contracts 
○  Economic security through bounty program 
○  Deployment with Hydra for exploit gap 

 
●  First rigorous, trustless incentive scheme for preventing smart 

contract attacks 

●  First decentralized incentives for defenders 



Main Challenges for on-chain deployment 

●  Coordinating multiple smart contracts: 
    -    The coordinator should (hopefully) be bug free 
    -    Maintain consistent blockchain state 
    -    How to recover from a discovered bug => escape hatches 

●  Frontrunning (as always…) 
    -    Attacker can break the exploit gap by witholding bugs 
    -    Search for full exploit until someone tries to claim a bounty 
    -    Solution: Submarine sends! 
              http://hackingdistributed.com/2017/08/28/submarine-sends/ 

  
 



Bug Withholding and Commit-Reveal 

Sol 1: To claim bounty at time T, must commit to bug at time T- 1 
 

Problem: Attacker commits in every round and only reveals if someone 
else does 
 
Sol 2: To commit, you must pay $$ (in a verifiable way) 
 

Problem: Attacker commits if someone else also commits 
 
Sol 3: Hide commitments (e.g., proof of burn to random address) 
 

Problem: Wasteful 
 



Submarine Sends (post-metropolis version) 

Goals: (1) only allow committed users to send a transaction to C 
            (2) being eternally committed is expensive 
            (3) attacker can’t know if someone has committed 
            (4) money isn’t wasted 
 
Submarine sends: 
Phase 1: compute addr = H(C || nonce || code) and send $$ to addr 
Phase 2: reveal addr to C.  
               C verifies that addr got $$ in Phase 1 
               C creates a contract with the specified nonce and code 

     C collects $$ and allows transaction 
                       

send $$ to C 

addr: { 
  BAL: $$ 
  CODE: ø 
} 

addr: { 
  BAL: $$ 
  CODE: code 
} 


