
Enter Hydra
towards (more) secure smart contracts

 Philip Daian, Ari Juels
 Cornell [Tech] .

 Florian Tramer .

 Stanford .

Lorenz Breidenbach
 ETH Zurich, Cornell [Tech].

Smart Contract Security - The Prongs

Formal Verification (+Specification)
what are we building and how can we check it?

Escape Hatches
how can we react to the unforeseen?

Bug Bounties
how can we address perverse incentives?

Why bug bounties?

Why bug bounties?

The
rational attacker’s
game

Why bug bounties?

The
rational attacker’s
game

Exploit!!

Attack Disclose

$0 $A

Why bug bounties?

Exploit!!

Attack Disclose

$0 $A

The
rational attacker’s
game Attack if $A > $0

Always attack

“Good enough” isn’t good enough

Exploit!!

Attack Disclose

$?? $A

The
rational attacker’s
game

“Good enough” isn’t good enough

Exploit!!

Attack Disclose

$?? $A

The
rational attacker’s
game

Attack if $A > $??

Towards a better game

Exploit!!

Attack Disclose

$B $A

The
rational attacker’s
game

Towards a better game

Exploit!!

Attack Disclose

$B $A

The
rational attacker’s
game

Classic bounty

Attack if $A > $B

The ideal game

Exploit!!

Attack Disclose

$B -$C $A

The
rational attacker’s
game
Hydra bounty
Known payout

The ideal game

Exploit!!

Attack Disclose

$B -$C $A

The
rational attacker’s
game
Hydra bounty
Known payout
Gap to exploit

Attack if $A-$C > $B

The
rational attacker’s
game
Hydra bounty
Known payout

The ideal game

Exploit!!

Attack Disclose

$B -$C $A

Attack if $A-$C > $B
So, raise $C….

We call this
barrier ($C) an
“exploit gap”

… mind the gap!

Exploit!!

Attack Disclose

$B -$C $A

Design Goals - The Perfect Bounty

●  Attack or disclose, not both (atomic)

●  Predetermined payout (verifiable)

●  Trustless payout (censorship resistant + verifiable)

Exploit Gap through Hydra Contracts

Chen & Avizienis, ‘78

… Houston we have a gap
(only one contract has bug)

[assuming independence, composability of exploits, and many others]
[in the event of any disagreement, fault manager invoked]

[assuming independence, composability of exploits, and many others]
[in the event of any disagreement, fault manager invoked]

… Houston we have a gap
(contracts have different bugs)

… Houston we have no gap! Hydra fails!
(all contracts have same bug, empirically rare?)

… let’s bring back the 80’s!

N-Version Programming Criticism

●  Analysis assumes full independence of faults (correlations are annoying!)

●  Knight-Leveson (‘86):
« We reject the null hypothesis of full
independence at a p-level of 5% »

●  Eckhardt et al. (’91):
 « We tried it at NASA and it wasn’t cost effective»
 Worst-case: 3 versions = 4x fewer errors

Cost, Availability & Reliability

●  «Classical» N-Version Programming: Availability >> Reliability
 - Majority Voting: Always available, but may fail often

●  Smart contracts: do we really car if it’s down for a while?
 - N-out-of-N agreement: better no answer than the wrong one
 - Empirically, there seem to be few « harmless » bugs

●  Numbers from Eckhardt et al. look much better:
 - For 3 versions, 30 − 5087 times fewer failures
 (but some loss in availability…)

The DAO (obviously) [language]
The “payout index without the underscore” ponzi (“FirePonzi”) [scam]
The casino with a public RNG seed [spec]
Governmental (1100 ETH stuck because payout exceeds gas limit) [programmer]
5800 ETH swiped (by whitehats) from an ETH-backed ERC20 token [language]
The King of the Ether game [language]
Rubixi : Fees stolen because the constructor function had an incorrect name [prg]
Rock paper scissors trivially cheatable because the first to move shows their hand [spec]
Various instances of funds lost because a recipient contained a fallback function that

consumed more than 2300 gas, causing sends to them to fail. [spec/pltfrm]
Various instances of call stack limit exceptions. [programmer]

In practice as well as theory - preventable bugs
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

The DAO (obviously) [language]
The “payout index without the underscore” ponzi (“FirePonzi”) [scam]
The casino with a public RNG seed [spec]
Governmental (1100 ETH stuck because payout exceeds gas limit) [programmer]
5800 ETH swiped (by whitehats) from an ETH-backed ERC20 token [language]
The King of the Ether game [language]
Rubixi : Fees stolen because the constructor function had an incorrect name [prg]
Rock paper scissors trivially cheatable because the first to move shows their hand [spec]
Various instances of funds lost because a recipient contained a fallback function that

consumed more than 2300 gas, causing sends to them to fail. [spec/pltfrm]
Various instances of call stack limit exceptions. [programmer]

In practice as well as theory - preventable bugs
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

 6-8/10 ain’t bad
(the rest are specification bugs or intentional backdoors).

… so, the project

●  Creation of trustless, decentralized bug bounty

●  Increased security for mainnet contracts
○  Economic security through bounty program
○  Deployment with Hydra for exploit gap

●  First rigorous, trustless incentive scheme for preventing smart

contract attacks

●  First decentralized incentives for defenders

Main Challenges for on-chain deployment

●  Coordinating multiple smart contracts:
 - The coordinator should (hopefully) be bug free
 - Maintain consistent blockchain state
 - How to recover from a discovered bug => escape hatches

●  Frontrunning (as always…)
 - Attacker can break the exploit gap by witholding bugs
 - Search for full exploit until someone tries to claim a bounty
 - Solution: Submarine sends!
 http://hackingdistributed.com/2017/08/28/submarine-sends/

Bug Withholding and Commit-Reveal

Sol 1: To claim bounty at time T, must commit to bug at time T- 1

Problem: Attacker commits in every round and only reveals if someone
else does

Sol 2: To commit, you must pay $$ (in a verifiable way)

Problem: Attacker commits if someone else also commits

Sol 3: Hide commitments (e.g., proof of burn to random address)

Problem: Wasteful

Submarine Sends (post-metropolis version)

Goals: (1) only allow committed users to send a transaction to C
 (2) being eternally committed is expensive
 (3) attacker can’t know if someone has committed
 (4) money isn’t wasted

Submarine sends:
Phase 1: compute addr = H(C || nonce || code) and send $$ to addr
Phase 2: reveal addr to C.
 C verifies that addr got $$ in Phase 1
 C creates a contract with the specified nonce and code

 C collects $$ and allows transaction

send $$ to C

addr: {
 BAL: $$
 CODE: ø
}

addr: {
 BAL: $$
 CODE: code
}

