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ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means
of testing the willingness of data holders to share genetic data in the simplest technical
context — query for the presence of a specified nucleotide at a given position within a
chromosome. Each participating site (or “beacon”) is responsible for assuring that genomic
data are exposed through the Beacon service only with the permission of the individual to
whom the data pertains, and in accordance with the GA4GH policy and standards.

While recognizing the inference risks associated with large-scale data aggregation, and the
fact that some beacons contain sensitive phenotypic associations that increase privacy risk,
the GA4GH adjudged the risk of re-identification based on the binary yes/no allele-presence
query responses as acceptable. However, recent work demonstrated that, given a beacon
with specific characteristics (including relatively small sample size, and an adversary who
possesses an individual’s whole genome sequence), the individual’s membership in a beacon
can be inferred through repeated queries for variants present in the individual’s genome.

In this paper, we propose three practical strategies for reducing re-identification risks in
beacons. The first two strategies manipulate the beacon such that the presence of rare alleles
is obscured; the third strategy budgets the number of accesses per user for each individual
genome. Using a beacon containing data from the 1000 Genomes Project, we demonstrate
that the proposed strategies can effectively reduce re-identification risk in beacon-like

datasets.



INTRODUCTION

The Global Alliance for Genomics and Health (GA4GH) [1] conceived the Beacon Project as a
means of testing the willingness of international sites to share genomic data in the simplest
of all technical contexts: A public web service that any data holder could implement to enable
users to submit queries of the form, “Do you have any genomes with nucleotide A at position
100,735 on chromosome 3?”, to which the service would respond with “Yes” or “No”. A site
offering this service is called a beacon and is responsible for assuring that genomic data are
exposed through the Beacon service only with the permission of the individual to whom the
data pertain, and in accordance with the GA4GH ethical Framework [2] and Privacy and
Security Policy [3]. Thus the Beacon service is designed to be technically simple, easy to

implement, and privacy protective.

The availability of vast quantities of high-quality genomic and health data is essential to the
advancement of biomedical knowledge. Yet, privacy concerns often limit researchers’ ability
to access potentially identifiable health data. Indeed, in some cases, privacy laws and
regulations actually impede individuals’ ability to make their own data available to
researchers [4]. This problem is particularly acute in the field of genomics, where the vast
majority of variants predicted to be functionally important are extremely rare, occurring in
less than 0.5% of the population [5]. As a result, it is unlikely that any single institution will
hold enough data to achieve sufficient statistical power in studying any particular condition.
Recognizing the urgent need for federation across organizations, the GA4GH was formed in
2013 to enable responsible sharing of genomic and health-related data by establishing

consistent policy, and interoperable standards and protocols.



From its inception, the GA4GH has been committed to achieving a responsible and effective
balance between data sharing and individual privacy, a challenge that has been extensively
explored in the literature [6—9]. In 2008, Homer et al. [6] showed that statistical techniques
can reveal the presence or absence of an individual in a genomic data set, even when the
targeted individual’s genome accounts for less than 0.1% of the total data. The publication of
this paper had a significant impact, prompting several major institutions including the
Wellcome Trust and the US National Institutes of Health to limit public access to data formerly
adjudged to be safely anonymous [10]. As this scenario demonstrates, privacy concerns can

undermine the ability of researchers to publish and access genomic data.

At the outset, the GA4GH recognized that the Beacon approach can reveal information about
the individuals in a data set. However, in performing the risk assessment, the GA4GH
recognized several conditions that served to mitigate the risk that any individual would be
identified based on Beacon search. First, the Beacon user-interface is extremely restrictive,
enabling query only for the presence or absence of the four nucleotides (A, C, T, G) that
comprise every individual’s genome. Second, the number of individual genomes aggregated
in each beacon is very large. Third, for a data seeker to be able to identify an individual
through Beacon queries would require as a pre-condition that the data seeker possess a
significant amount of genomic data associated with the targeted individual, such as a variant
call format (VCF) file of the individual’s whole genome sequence. In such case, a potential
adversary would know all variants in the individual’s genome, and would have much more
efficient means of discovering a disease association than persistent beacon queries. Thus

GA4GH concluded that the risk of a data seeker identifying an individual through Beacon



queries was acceptably low, even for the case of a data seeker willing to violate GA4GHs

ethical standards.

However, Shringarpure and Bustamante [11] describe an attack in which an anonymous
adversary, even with knowledge of only a small portion of a target’s genome can successfully
launch a re-identification attack: In a beacon comprising 1,000 individuals for instance, 5,000
queries suffice. Such an attack relies on a likelihood ratio test whose power is a function of
the responses returned by the beacon, the size of the data set, the allele-frequency spectrum,
and the sequencing error rate. Their paper demonstrates that under certain conditions, the
anonymous-access model implemented by the Beacon Project does not prevent identification

of individuals whose genomes could be exposed through a Beacon interface.

The goal of this paper is to further examine the potential vulnerabilities and risks associated
with the Beacon model, and to explore ways of mitigating re-identification risks — thus
enhancing Beacon privacy protections. Re-identification is the process by which anonymized
personal data is matched with its true owner [12]. We first analyze the re-identification threat
described by Shringarpure and Bustamante and the vulnerability the attack exploited. We
then propose an optimized version of the attack that considers an adversary with some
background knowledge about the allele frequencies in the targeted beacon. We describe
three potential strategies for mitigating the risk of re-identification and assess their
effectiveness through several experiments with data obtained from the 1000 Genomes
Project [13]. We conclude the paper by discussing the strengths and weaknesses of the
proposed strategies and by providing some recommendations for strengthening Beacon

privacy protections.



MATERIALS AND METHODS

Original Re-lIdentification Attack

We begin by describing the re-identification attack proposed by Shringarpure and
Bustamante [11]. In the following we refer to it as the "SB attack."

As noted earlier, the setting of the SB attack is similar to that of previous works such as that
of Homer et al. [9]. The attacker is assumed to have access to the VCF file of a target victim’s
genome and queries the beacon at heterozygous positions to determine whether the victim
is in the beacon or not. The SB attack relies on a likelihood-ratio test (LRT) that evaluates the

likelihood of the beacon’s responses under two possible hypotheses:

e The null hypothesis Hy: The queried victim’s genome is not in the beacon.

e The alternative hypothesis H;: The queried victim’s genome is in the beacon.

The re-identification risk is measured by the power of such a test, i.e.,
Pr(reject Hy | H; true). To make their test as general as possible, Shringarpure and
Bustamante assume only that the attacker knows the beacon size N, as well as the site
frequency spectrum of the beacon population. Formally, the alternate allele frequency f; of
a heterozygous SNP observed in the population is assumed to be distributed as f;~beta(a, b)
for population parameters a, b. Their LRT further allows for a probability 6 of sequencing
errors, resulting in a mismatch between the attacker’s copy of a genome and the copy in the
beacon.

Given a set of beacon responses R = {x;, ..., X, }, the log-likelihood of the sequence is

L(R) = Y-, xlogPr(x; = 1) + (1 — x;)logPr(x; = 0) . (1)



Under H;, let Dj,_, denote the probability that none of the N — 1 other genomes in the
beacon have an alternate allele at position i. Similarly, under H, we denote by D} the
probability that none of the N genomes in the beacon have an alternate allele at i. Then,

under the two hypotheses, we have

Ly, (R) = Xy xlog(1 — 6Dy 1) + (1 — x)log(8Dg 1) (2)

Ly, (R) = Xy xlog(1 — Dg) + (1 — x;)log(Dy) - (3)

Shringarpure and Bustamante show that under their assumptions, for any position i we have

D}_; = E[p?"~?] and DY, = E[p?"], where p;~beta(b, a). The log of the LRT is given by

A=Ly,(R)— Ly, (R)=nB+CY, x; , (4)

where B and C are constant for N, §, a, b fixed. Thus, 7 ; x; (the number of “Yes” responses

from the beacon) is a sufficient statistic for the LRT.

“Optimal” Attack with Real Allele Frequencies

The SB attack removes direct dependency on allele frequencies and sets conservative bounds
for the number of queries required for successful re-identification. We consider here a more
capable and determined attacker who has access to some background knowledge on allele
frequencies and optimizes his attack by querying the rarest alleles in the victim’s genome first.
In other words, similarly to best practices in forensics, the attacker makes use of alleles with
maximum re-identification power instead of performing random requests. This assumption

appears reasonable in practice, as allele frequency information for different ancestries is



already publicly available on the Web (e.g., 1000 Genomes Project [14], HapMap Project [15],
etc.) and easily accessible even by non-expert attackers. We show through several
experiments (see Results Section) that this new attack is significantly more powerful than the
original SB attack, even when the attacker has incomplete knowledge on allele frequencies in
the beacon.

Formally, the attacker assumes allele frequencies f;, f5, ..., fu for the M SNPs in the victim’s
genome. Without loss of generality, we assume the frequencies are already ordered (i.e, f; <
f2 < -+ < fu)- Then, the attacker will maximize his re-identification power by first querying
those SNPs which are least likely to appear in the beacon under H,, specifically those with
lowest frequency. In this setting, Equations (2) and (3) still hold, but the computation of D},_,

and D[, is different. Under the alternative hypothesis, we have

D};_; = Pr(none of the other N — 1 genomes have an alternate allele at position i)
= (@~ f)H""
— (1 _fi)ZN—Z .
Similarly, under H, we have D}, = (1 — f;)?".
As the probabilities D};,_1 and D,‘;, now directly depend on the position i, we have that the

following LRT

A = Ly (R) = Ly, (R)

Dl 60—, -0k
SDIiV—1> + log (Dliv(l_aDIiV—ﬂ) Xi

= 37, log(

- J 1-a-fp*N
= Z?:l log((s 1(1 - ﬁ)z) + log ((1_fi)2 : 1—6(1—f1‘)2N—2) xi : (5)



We will evaluate the power of this test empirically, through experiments in a variety of
settings with real data and different levels of adversarial background knowledge. We will
estimate the null distribution of the LRT by computing Equation (5) for a number of control
individuals known not to be in the beacon. The null hypothesis is rejected if A < t for some
threshold t. We then let t, be such that Pr[A < t,|Hy] = @. The power of the test is
computed as 1 — f§ = Pr[A < t,|H,], where the distribution of A given H; is estimated by

querying individuals in the experimental beacon.

Risk Mitigation Strategies
Based on the “optimal” version of the re-identification attack, we propose three different
practical strategies to mitigate the risk. Without loss of generality, we can assume that any

III

defense mechanism that effectively mitigates the “optimal” re-identification attack also
effectively mitigates the original SB attack. Our experimental results (see Results section)

show the validity of this assumption.

Beacon Alteration Strategy

The first strategy (S1) relies on the observation that most of the statistical power in the re-
identification attack comes from queries targeting unique alleles in the beacon. In particular,
S1 alters the beacon by answering a query with “Yes” only if there are at least k > 1
individuals sharing the queried allele. In other words, k is the minimum number of individuals
in the beacon sharing the queried allele when returning “Yes”. Current beacons set k = 1,
i.e., when there are one or more individuals in the population with the queried allele, the

answer will be “Yes”. We assume the value of k is made public, hence the attacker will modify

10



the attack to accommodate this change (see Appendix A for LRT under S1). Yet, already for

k = 2 we found that in practice what the attacker can infer is limited (see Results Section).

Random Flipping Strategy

The second strategy (S2) relies on the same observation but instead of altering the beacon
response, it introduces noise into the original data. The disadvantage of S1 is that only a
subset of variations (e.g., the non-unique SNPs when k = 2) in the beacon population can be
queried. In practice, unique alleles that are likely to be the most useful in human genetics
research, are completely hidden. S2 improves the usability of the beacon over S1 as it hides
only a portion & of unique alleles, but not all. In other words, a beacon with S2 will add noise
by sampling from a binomial distribution with probability &€ only to unique alleles in the
database and provide false answers (e.g., “No” instead of “Yes”) to queries targeting these
unique alleles. The main goal of S2 is to share as many unique alleles as possible while
reducing the likelihood that the information released will be sufficient to re-identify an
individual in the database. We assume the value of ¢ is public. As for S1, the attacker will

adapt the LRT statistic to take it into account (see Appendix B for LRT under S2).

Query Budget per Individual Strategy
The third strategy (S3) mitigates the re-identification risk by assigning a budget to every
individual in the database; this budget is applied to each authenticated Beacon user. With

respect to strategies S1 and S2, S3 leverages two additional assumptions:

e Each Beacon user has been identity proofed, holds a single account, is authenticated,

and does not collude. If users are allowed to collude, then to be effective, S3, will

11



have a dramatic impact on the utility of the system. This assumption appears
reasonable in practice as, in order to collude, a user needs by definition to involve
someone else. We assume that each user holds a single Beacon account to eliminate
the possibility of a single user simulating multiple profiles in collusion, which carries
higher risk than either collusion among multiple users or a re-identification attack
that can be undertaken at an individual scale. This is because an attack involving
multiple accounts, all working on behalf of a single attacker, does not require
exchanging files with other users, and could be conducted more quickly than a single-

threaded attack.

e The attacker has accurate genomic information, which means § = 0. This is a worst-
case assumption because, if we can prevent re-identification under this condition, we
can prevent against the proposed “optimal” attack, too. Note that in practice, as there
are some sequencing errors (i.e., § > 0), the attacker will actually have less power.
Hence, this approach is conservative from a re-identification point of view. Moreover,
by assuming § = 0, we can significantly simplify the analytical treatment of the

problem.

The basic idea is that each time an individual’s genome contributes to a “Yes” answer for a
given query (i.e., the individual has the queried allele), her corresponding budget for that
Beacon user is reduced by an amount that depends on the frequency of the queried allele. If
her budget is less than this amount, her information will not be used to answer that query

and the individual will be removed from the dataset, as shown in Algorithm1 in Table 1. In

12



this way, the privacy of the individual will be always preserved at a cost of a slight decrease

of utility.

Table 1. Algorithm describing mitigation strategy S3

Algorithm1
Requires: upper bound on test errors p

1. Setall b; = —log(p)

2. Receive i-th query and check whether it has been asked before. If yes, go to Step 3. If no, go to Step 4
Return the previous answer, then go to Step 2.

Compute the risk r; = —log(1 — D]V).

Check whether there are any records with the asked variant and b; > ;. If no, return no and go to Step 2.

For all the individuals with such variant and b; > 1, reduce their budgets by r;. Then return yes.

Njou|ikw

Go back to Step 2 and wait for the next query.

Let R be the set of responses of the beacon, the goal of S3 is to keep track of the power of
the attack which is based on the LRT A = Ly (R) — Ly, (R), in order to prevent any individual
genome from contributing to a query response that can leak identity information with high

confidence (see Appendix C for formal description of S3).

Experiments with Real Data

To evaluate the effectiveness of the proposed strategies in reducing risk under the “optimal”
attack with real allele frequencies, we designed and ran several experiments on real data with
the following setup. We created a beacon composed of 1,235 samples of chromosome 10
randomly chosen from the 2,504 individuals in phase 3 of the 1000 Genomes Project [13]. A
total of 31 relatives were removed. The resulting data set consists of individuals with either
European, African, admixed American, East Asian or South Asian ancestries. Among these

samples, 100 were selected as the control set. Similarly, from the remaining individuals not

in the beacon, 100 were selected as the test set.

13



The null distribution of the LRT statistic was obtained through the exact-test computation on
the 100 individuals in the test set (i.e., not in the beacon). With a false positive rate of a =
5% we computed the power (1 — ) as the proportion of test rejected (i.e., when A < t,) for
the control set (i.e., how many individuals in the control set, hence in the beacon, were

successfully re-identified).

RESULTS

“Optimal” Re-ldentification Attack in Single-Population Beacon

We evaluated the re-identification power of our attack on a beacon composed by individuals
coming from the same ancestry group. From phase 3 of the 1000 Genomes Project, we
selected 502 samples of European (EUR) ancestry and we randomly picked half of them to set
up the beacon. The remaining half was used to compute the EUR population allele
frequencies. We considered several scenarios where the attacker has different types of
background information.

As expected, results in Fig.1 show that the worst case scenario is represented by an attacker
knowing the exact ancestry of the population in the beacon. With only 3 SNPs, beacon
membership could be re-identified with 100% power and 5% false positive rate. Yet, as the
beacon ancestry information is not always public, a more realistic scenario is to consider an
attacker that only knows the allele frequencies of a random population possibly from a
different ancestry than the one of the beacon. Even with the least precise background
information (in this case the allele frequencies from EAS ancestry), 36 SNPs are sufficient to
re-identify an individual. Fig.2 shows the Kendall rank correlation coefficient [16] between
the actual allele frequencies in the beacon and the allele frequencies from different ancestry

groups. By combining the information in Fig.1 and Fig.2 it is easy to observe that the higher

14



the ordinal association is between the beacon allele frequencies and the allele frequencies
known by the attacker, the fewer queries are needed to re-identify with 100% power and

III

5% false positive rate (see Appendix D for results on the “optimal” attack in multi-population

beacon).

“Optimal” Re-ldentification Attack in Beacon with S1

We evaluated the proposed solution S1 by considering an attacker who knows the allele
frequencies of the 1000 Genomes Project and the value of threshold parameter k. As such,
we set up a beacon as described in Section Materials and Methods and computed the LRT
statistic as described in Appendix A. Fig.3 shows that, under such an attack, no individual in
the beacon can be re-identified if a “Yes” answer is provided only when the queried allele
appears at least k = 2 times in the database. Yet, the downside of this method is that only a
fraction of the alleles that are in the beacon can be shared. For example, in our experimental
beacon, only 60% of the alleles are shared by two or more individuals and thus can be shared;
the queries to the remaining rare alleles (= 40%) will receive a “No” answer even though

they are actually present in the Beacon database.

“Optimal” Re-ldentification Attack in Beacon with S2

To evaluate the effectiveness of S2 against an attack with background knowledge on allele
frequencies, we consider an attacker who knows the allele frequencies of the 1000 Genomes
Project and the value of the parameter €. Fig.4 shows how the statistical power of the attacker
decreases when different portions (&) of unique alleles are hidden. When ¢ is set to be 0.001,
the attacker has to query around 10* unique alleles to obtain a strong power of re-

identification, compared to 200 queries for 100% re-identification when no random flipping
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on unique alleles (of S2 strategy) is applied. When ¢ is set to be equal or greater 0.15, the re-
identification power will not increase above = 30%, which will keep the power at an

acceptable risk level (i.e., relatively low confidence of re-identification).

Budget Evaluation in Beacon with S3

We evaluated strategy S3 with the same experimental setting as for S1 and S2. By default, we
set p = 0.05, which means the statistical power of attack cannot exceed 0.95. Differently
from experiments performed on solutions S1 and S2, which show an increase in re-
identification risk given certain levels of utility of the beacon, we evaluate the efficacy of S3
by computing the decrease of utility across queries for a certain level of re-identification risk.
To this purpose, we emulate the query behavior of a typical honest beacon user by generating
queries based on the distribution of query frequency per allele frequency extracted from ExAC
browser [17] logs over a period of 12 weeks.! During this time frame, a total of 1,345,291
queries were asked on 934,680 variants present in EXAC. Table 2 shows the proportion of
gueries and allele per range of allele frequencies (AF).

Fig.5 shows how the number of individuals with enough budget decreases with respect to the
number of queries answered by the beacon. Note that the beacon’s utility is completely

preserved for the first 2,000 queries.

Table 2. Proportions of queries (over a period of 12 weeks) for each range of allele frequency.

Allele frequency <0.001 0.001~0.01 0.01~0.05 0.05~0.5 >0.5
Queries in EXAC 0.853 0.0.076 0.023 0.033 0.014

! Data on beacon query frequencies were not available at the time of this work.
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DISCUSSION
In this paper, we have analyzed in detail the beacon re-identification attack originally

III

proposed by Shringarpure and Bustamante and a new and “optimal” version of it by
considering a smarter adversary who makes use of public information on allele frequencies.
We evaluated the power of our new attack through several experiments on real data by
considering different conditions of adversarial background knowledge. Our results show that
our attack always outperforms the original SB attack. As one might expect, we have observed
that the power of an adversary’s re-identification attack is directly related to the
completeness and accuracy of the adversary’s knowledge of the allele frequencies of the
targeted beacon. As already analyzed by Shringarpure and Bustamante the underlying LRT
test can be extremely harmful when a beacon is linked to sensitive phenotypes. Yet, it is
important to emphasize that, although our attack further reinforces SB’s concern, the re-
identification risk is relative to each beacon. These attacks fundamentally rely on the
assumption that the attacker already has access to the genome of the victim.

Despite such a strong assumption, several research efforts in genomic privacy have studied
the problem of re-identification of membership in genetic databases and have shown that
this is extremely hard to prevent and sometimes even impossible [18].

III

Based on the “optimal” re-identification attack we have proposed three different strategies
aimed at effectively thwarting beacon membership re-identification. As the accuracy of the
beacon re-identification attack depends on the power and false positive rate of the LRT test,
the probability that a test behaves correctly (rejecting the null hypothesis when it is false and

failing to reject when it is true) is given by Power*(Probability of alternative hypothesis)+(1-

False positive rate)*(Probability of null hypothesis). From the perspective of a beacon
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administrator, the attacker’s test should be incorrect most of time, i.e., power should be low
and/or false positive rate should be high.

The three proposed strategies all address the mitigation problem by controlling the power or
the false positive rate. The first (S1) and the second (52) strategies reduce power to nearly
zero when the LRT must have a small false positive rate, whereas in the third solution (S3),
the test always has 100% power but a high false positive rate. In particular, S1 and S2 directly
alter the beacon to reduce the inference power of the attacker whereas S3 introduces a new
idea of personal budget that decreases when the genome of the individual is used to
positively answer a query.

Results of our experiments have shown that all proposed mitigation strategies have
advantages and disadvantages, as summarized in Table 3. S1 effectively mitigates the attack
by keeping the power of the LRT to 0.2 if all unique alleles are flipped. Yet, it generates a
significant loss in utility of the beacon, as the majority of the queries of a typical user of
beacon usually target rare alleles. We define the utility of a beacon as the proportion of true
answers it can provide. S2 can be considered as a more sophisticated version of S1 because it
only flips a portion of unique alleles affording a more fine-grained control over the utility vs.
privacy trade-off. The attack inference power can be confined to a secure level by flipping
only 15% of unique alleles (which means a drop in utility of 6% against 40% of S1). Note that
the utility of a beacon adopting either S1 or S2 is fixed a priori and does not change along with
the power of the attack.

Finally, results of experiments on S3 show that, given a certain assurance level (p = 0.05),
the beacon utility is completely preserved for the first 2,000 queries. Yet, S3 relies on the
assumption that the beacon system is not anonymous and has a controlled level of access

with user authentication and identity proofing. Based on data collected from the ExAC
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browser logs, a budget of 2,000 query per beacon user seems a reasonable compromise

between re-identification risk and utility.

Table 3. Summary of advantages and disadvantages of the three proposed mitigation strategies.

Risk Mitigation Strategy

S1: Beacon Alteration

S$2: Random Flipping

S$3: Query Budget per Individual

Disadvantages

Eliminates possibility of querying
for unique alleles highly likely to be
most useful in genetic research

Decreases rate of true answers
returned from querying unique
alleles likely to be useful in genetic
research

Requires the assumption of Beacon
user being non-anonymous and
holding no more than one Beacon

Advantages

Protects privacy of individuals
possessing variants most likely
to be targeted by attackers

Permits some unique alleles to
be discoverable and to fine-
tune the privacy-utility trade-
off

Enables all alleles to be
discoverable until budget is
exceeded

account; may require complicated
accounting scheme

Preventing inference attacks on large databases is widely known to be one of the most
daunting of database security challenges [19]. This fact has been a major consideration in the
development of GAAGH’s Framework for Responsible Sharing of Genomic and Health-Related
Data, Privacy and Security Policy, and Security Infrastructure. Effective risk management must
leverage policy, technology, and community governance to address re-identification risks.
Effective risk management is fundamental to facilitating and promoting data sharing across
the GA4GH global community. We emphasize that security and privacy are components of
risk management. Technical risk-management strategies such as those proposed in this
paper, are practical and can be adapted according to the context of each beacon. Therefore,
they represent a valuable set of options for assessing and mitigating risk within the GA4GH

community.
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Figure 1: “Optimal” Re-ldentification Attack in Single-Population Beacon. Different power
rates per number of SNPs queried from an unprotected beacon with a single population (EUR)
by an adversary with different types of background knowledge: (Green) The attacker knows
the allele frequencies of a population from the same ancestry (EUR) as the one in the beacon
and performs queries following the rare-allele-first logic; (Red, Cyan, Blue and Purple) The
attacker knows the allele frequencies of a population from an ancestry different from the one
in the beacon and performs queries following the rare-allele-first logic (African (AFR),
admixed American (AMR), East Asian (EAS) or South Asian (SAS), respectively); (Yellow) The
attacker knows the allele frequencies of a distinct population with the same ancestry (EUR)

other than the one in the beacon but performs queries in random order; (Black) The attacker
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does not have any information on allele frequencies (i.e., the original attack by Shringarpure

and Bustamante [11]).
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Figure 2: Kendall Rank Correlation Coefficient with respect to true beacon allele
frequencies. Kendall rank correlation coefficient between the actual allele frequencies of the
single-population beacon of Fig.1 and the allele frequencies of populations with different

ancestries. Values closer to 1 represent higher correlation. Colors mapping as in Fig.1
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Figure 3: “Optimal” Re-ldentification Attack in Beacon with S1. Different power rates per
number of SNPs randomly queried from a beacon with mitigation S1 by an adversary with
knowledge on k and on allele frequencies from the 1000 genomes project: (Blue) k = 1;

(Green) k = 2.
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Figure 4: “Optimal” Re-ldentification Attack in Beacon with S2. Different power rates per
number of SNPs queried (with rare-first logic) from a beacon with mitigation S2 by an
adversary with knowledge on ¢ and on allele frequencies from the 1000 genomes project.
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queries targeting alleles with AF=0.001. Red, Green and Blue curves correspond to 0.002,

0.005, 0.01, respectively.
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Supplementary Materials:

Addressing Beacon Re-ldentification Attacks: Quantification and

Mitigation of Privacy Risks

Table S4. Table of symbols and abbreviations

Notation Description

N Total number of genomes in the beacon.

Q ={q1,---,q,} Setofn queries.

R ={x4,...,x,} Setofnresponsesreturned by the beacon.

H, Null hypothesis: query genome is not in beacon.

H; Alternative hypothesis: query genome is in beacon.

fi Alternate allele frequency at the SNP corresponding to query g;.

pi Reference allele frequency at the SNP corresponding to query q;, (p; = 1 — f;).

L(R) Log-likelihood of a response set R = {x4,...,x,}.

Ly, (R), Ly, (R)  Log-likelihood under the null/alternative hypothesis.

beta(a,b) Alternate allele frequency distribution assumed in the original by Shringarpure and
Bustamante [1].

Di_, Probability that none of the N — 1 genomes in the beacon has an alternate allele for
query q;.

Dy Probability that none of the N genomes in the beacon has an alternate allele for query g;.

) Probability of mismatch between the query genome and its copy in the beacon due to
sequencing errors.

jEL...,N Index of individuals in the beacon.

i€el,...,n Index of queries.

a Type | error: P(reject Hy|H,is true). False positives.

B Type Il error: P(accept Hy|H;is true). True positives.

power P(rejectHy|Hqistrue) =1 — 6.

T; Risk of query i.

b; Budget of patient j.

LRDy,, LRDy,
A
t

QJ'

LRT
SNP
VCF

Likelihood ratio distribution under the alternative/null hypothesis.

LRT statistic.

Cut-off for the LRT statistic A (the null hypothesis is rejected if A < t).

Set of queries answered by individual j.

Threshold on the number of individuals carrying an alternate allele at the queried SNP
(used in defense S1).

Probability of adding noise on unique alleles (used in defense S2).

Budget for individual j. Initially B; = —log(p) for every j (used in defense S3).
Risk for query i (i.e., how much budget for every individual j is deducted

from B; if the beacon answers query i).

Likelihood Ratio Test.

Single Nucleotide Polymorphism.

Variant Call Format.
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APPENDIX A: LRT UNDER BEACON ALTERATION STRATEGY (S1)
The first strategy (S1) is based on the observation that most of the statistical power in the re-
identification attack comes from queries targeting unique alleles in a beacon database. In
particular, the proposed algorithm alters the beacon by answering a query with “Yes” only if
there are at least k > 1 individuals sharing the queried allele. We assume the value of k is
made public, hence the attacker will modify the attack to accommodate this change.
Formally, the attacker knows the allele frequencies for the SNPs in the victim’s genome, and
these frequencies can be ordered randomly or sequentially. In this setting, Equation (1) still
holds, but Equations (2) and (3) needs to be modified as they now depend on k.
Under the alternative hypothesis, the beacon responds “No” if either of the following two
conditions is met.

e A sequencing error § occurred and less than k other individuals have a copy of the

allele
e No sequencing error occurred but less than k — 1 other individuals have a copy of the

allele

Hence, we have

Ly, (R, k) = Xiy x;log(Pr(x; = 1|Hy, k) + (1 — x)log(Pr(x; = 0|H,, k))
= Xi1 xl0g(8(1 — Dy_1 (k) + (1 — 8)(1 — D1 (k — 1)))

+(1 = x;)log(8Dy—1 (k) + (1 — 8)Df—1 (k — 1)) (51)

where Df_; (k) denotes the probability that fewer than k out of N — 1 individuals have an

alternate allele (for query gq;). Let Xy_;,, be a random variable following a binomial
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distribution with N — 1 trials and success probability s; = 1 — (1 — f;)?, where s; represents
the probability that a given individual (other than the victim) has at least one copy of an

alternate allele (for query g;) with frequency f;. Then,

Di_, (k) = Pr(less than k out of N — 1 genomes have an alternate allele at position i)

= Pr(Xy_1s < k) = 2553 ("71) (1= (L= 2 (A = fPN 1. (52)

Similarly, under the null hypothesis, the probability that the beacon responds “No” to a query
q; for an allele with frequency f; is the probability that at most k — 1 individuals have a copy

of the query allele. Hence, we have

Ly, (R, k) = Xiy x;log(Pr(x; = 1|Ho, k)) + (1 — x;)log(Pr(x; = 0|Hy, k)

= X1 xlog(1 — Dy (k) + (1 — x;)log(Dy (k) (S3)
Therefore, the likelihood ratio test statistic A(k) when k = 2 can be computed by

A(k) = Ly, (R, k) — Ly, (R, k)

= 31 log (5t ——)

8Dh_, (kK)+(1-8)D%_, (k1)

1-DL (k) (8D _, (K)+(1-8)Dk_, (k—1
(1-D} () (8D}, 00+ (1-8)Dfy_y )))i_ (s4)

+lo ( - - -
& D} (K)(8(1-Dfy_ (k))+(1-8)(1-Dy_, (k—1)))

Note that if kK = 1, from Equations (A1) and (A3) we can obtain Equations (2) and (3),

respectively.
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An alternative approach is to hide the precise number of individuals within a beacon database
and instead provide an approximate database size (e.g., the reported database size is 100
although the actual database size is 1000). In this case, let the approximate size of a beacon
database that the attacker knows be N, ; thus, the LRT statistic A can be calculated according

to Equation (5), where N = N,,.

- 8 1-(1-f*Na
A=3", log(6~1(1 - £)?) + log ((1_m2 = 6(1_fi)ma_2) Xi . (s5)

APPENDIX B: LRT UNDER RANDOM FLIPPING STRATEGY (S2)

The second strategy (S2) relies on the same observation of S1 but instead of altering the
beacon response, it introduces noise into the original data. S2 improves the usability of the
beacon over S1 as it hides only a portion € of unique alleles, but not all. In other words, a
beacon with S2 will add noise with probability € only to unique alleles in the database and
provide false answers (e.g., “No” instead of “Yes”) to queries targeting these unique alleles.
Without loss of generality, we assume the value of € is public. As for S1 the attacker will adapt
the LRT statistic to take it into account.

Formerly, and also in this case, the attacker knows the allele frequencies for the SNPs in the
victim’s genome and performs queries by following the rare-allele-first model. Similarly to S1,
Equation (1) still holds, but Equations (2) and (3) needs to be modified again as they now
depend on €.

Under the alternative hypothesis, the beacon responds “No” if either of the following two

conditions is met.
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e Asequencing error 6 occurred and none of the other N — 1 participants has a copy of
the allele.

e An artificial error € occurred and the allele is unique. Note that an allele is unique if a
sequencing error occurred and another participant has a copy of the allele or if no
sequencing error occurred and none of the other N — 1 participants has a copy of the

allele.

Hence, we have

Ly, (R, &) = Xty xilog(Pr(x; = 1|Hy, €)) + (1 — x)log(Pr(x; = 0|Hy, €)),  (S6)

where the probability of a “No” answer is

Pr(x; = 0|Hy, €) = Pr(none of N — 1 genomes have analternate allele at position i)
+¢&Pr(allele at position i is unique)
= 6D, + e(6Pr(Xy_15, = 1) + (1 — 6)D§_;)

== E(SPI‘(XN_LSL. - 1) + (6 + & — S(S)Dll;,_l. (57)

Note that Pr(Xy_,, = 1) denotes the probability that another participant has a copy of the

allele at position i. As in Appendix A, we can derive such a probability as

PriXy-15, = 1) = ("] - (1 = )M - f)H"
=(N-DA-AQ-H)HA-HH (S8)
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Similarly, under the null hypothesis we have

Ly, (R, €) = Xty xilog(Pr(x; = 1|Ho, €)) + (1 — x)log(Pr(x; = 0|Hp,£)),  (S9)

where the probability of receiving a “No” answer from the beacon is

Pr(x; = 0|H,, €) = Pr(none of N genomes have an alternate allele at position i)
+¢Pr(allele at position i is unique)

= Dj + ePr(Xys, = 1) (510)

Finally, the likelihood ratio test statistic A(€) can be easily derived from Equations (S6) and

(S9) as in Appendix A.

APPENDIX C: QUERY BUDGET PER INDIVIDUAL STRATEGY (S3)

The third strategy (53) aims at mitigating the re-identification risk by assigning a budget to
every individual in the database, which is applied to each authenticated Beacon user. With
respect to strategies S1 and S2 described above, S3 leverages two additional assumptions:

e Each Beacon user has been identity proofed, holds a single account, is authenticated,
does not collude. If users are allowed to collude, then S3, to be effective, will have a
dramatic impact on the utility of the system.

e The attacker has accurate genomic information, which means § = 0. This assumption
is necessary to simplify the mathematics of the problem and is a worst-case
assumption as, if we can prevent re-identification under this condition, we can

prevent against the optimal attack.
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Let R be the set of responses of the beacon, the basic idea of S3 is to keep track of the power
of the attack which is based on the log likelihood-ratio test A = Ly (R) — Ly, (R), in order to
prevent any individual genome from contributing to a query response that can leak identity
information with high confidence.

More formally, we define a cut-off threshold t, on the value of A to determine which
hypothesis to accept (i.e., the null hypothesis is rejected if A < t,). Then the false-positive
rateis @ = Pr[A < t,|H,] and the power of the testis 1 — § = Pr[A < t,|H,].

So to validate that the original attack is thwarted by S3, we first need to know the distribution
of A under Hy and H;. In the analysis by Shringarpure and Bustamante, it is shown that A is
asymptotically Gaussian under both hypotheses (with different parameters). In our case, this
result does not hold because we set § = 0 and assume fixed allele frequencies f; for each
allele.

The crucial observation here is that since § = 0, if the queried individual is in the beacon it
must be that the beacon responds “Yes” to all queries q; € Q made by the adversary for a

query individual. Let Ry denote the sequence of all “Yes” responses. We consider two cases:

®* R = Ry¢s. One then easily obtains:

Ly, (R) =0, Ly (R) =X, log(1—Dy), A=ZXL,log(1-Dy). (511)

® R # Ryes. Then, we have:

LHl(R) = —0O, LHO(R) € R, A=o0 . (512)
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So we see that in any case, the random variable A can only take on two values, either

n_ log(1 — D}) or 0. Now, if H, is true, R must be Ryes. Thus, we have that the distribution
of A under H, reduces to the constant Y™, log(1 — D). If H, is true, the beacon responds
“Yes” to query g; with probability 1 — Di. Thus, Pr[R = Ryes|Ho] = [T}=; (1 — D). Then,
under Hy, A is a random variable that takes value Y™, log(1 — D)) with probability

n . (1 —=DL), and value oo otherwise. In summary:

AlH; = ¥, log(1 — Df) with probability1 ,

AlH,y = (Z}Ll log(1 — D}) with probability [T, (1 —D}) ,
00 otherwise.

So the cut-off threshold t must be chosen somewhere in [Y7; log(1 — D},), +oo[. According
to the above, the power of the adversary will always be 1 (the adversary will never conclude
that the victim is not in the beacon when she actually is). So our only control is over the false-
positive rate @ = [[™; (1 — DL). The goal of our strategy here is to dismiss an individual from
consideration for any further query responses as soon as including her data would enable the
adversary to construct a powerful re-identification test for that individual. By this, we mean
a test with power 1 and false positive rate a < p, for some chosen p. Our budget method
sets b; = —log(p) at first and then each time a query is made for an allele that a individual
possesses, we first check whether the budget of the individual is larger than —log(1 — D),
then reduce his budget by —log(1 — D}). In this way we ensure that for each individual j,
[licgi (1 — DY) > p, where Q; represents the subset of queries made for alleles that
individual j possesses, and for which individual j was considered when constructing the

response.
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For simplicity, we consider here that an adversary that wishes to re-identify individual j will
only query SNPs for which j possesses the alternate allele (assuming § = 0). Indeed, for a
query for a variant that j does not possess, we have Pr[x; = 1|H;] = 1 — D} _; and Pr[x; =
1|Hy] =1-— D};,, which are negligibly close for large N. Thus, such queries can simply be

considered as useless for distinguishing H, from H;.

APPENDIX D: RESULTS ON OPTIMAL RE-IDENTIFICATION ATTACK IN MULTI-POPULATION
BEACON

Beacons often contain individuals coming from different ancestry groups. As a consequence,
we further evaluated the attack based on real allele frequencies on a multi-population beacon
and considered the case where an attacker might have only partial information about the
different ancestries in the beacon. We set up a different beacon by removing individuals with
EUR ancestry from phase 3 data set of the 1000 Genomes Project, and by selecting 1,235
random individuals from the remaining ones. The resulting population is composed by
individuals with African (AFR), Ad Mixed American (AMR), East Asian (EAS) or South Asian
(SAS) ancestries. We picked 100 random samples from the beacon and 100 random samples
not in the beacon and not of EUR ancestry to compose the query set.

As expected, results in Fig.S1 show that also in the multi-population beacon the new re-
identification attack based on allele frequencies is more effective than the one of
Shringarpure and Bustamante. Especially, when the attacker knows the allele frequencies for

a population with the same mix of ancestries of the individuals in the beacon (blue curve), 5
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queries on average’ are enough to obtain 100% of statistical power with 5% false-positive
rate. As expected, with the same background knowledge but by querying alleles in random
order, the attacker needs 750 more queries (azure curve) to obtain the same statistical power.
A more realistic scenario is represented by the attacker knowing partial (e.g., allele
frequencies from a population with AFR ancestry) or unrelated information (e.g. allele
frequencies from a population with EUR ancestry) about the ancestries in the beacon. In these
cases, 100% of statistical power with 5% false-positive rate can be obtained with 20 (green

curve) or 37 (red curve) queries, respectively.

T
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Figure S1. Different power rates per number of SNPs queried from an unprotected multi-population beacon (the beacon
contains individuals from all ancestry in the 1000 Genomes Project but the European ancestry) by an adversary with
background knowledge on allele frequencies. Different colors represent different types of background knowledge.

’ The attack is repeated on 100 different individuals.
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APPENDIX E: MITIGATION STRATEGIES COMPUTATIONAL COMPLEXITY EVALUATION

The first and second strategies induce very little overhead. The allele frequencies can be pre-
calculated, which takes only linear time to the size of the database, and kept as a table in the
database. Once k or ¢ is pre-determined, the beacon will just need to check if the query
allele's frequency is smaller than k (for strategies S1 and S2) and to generate a random
number (for S2) before composing a response of “Yes” or “No”.

For mitigation strategy S3, we can easily compute the complexity of the proposed algorithm
(see Algorithm1 in the paper). Suppose there are N individuals in the dataset, then for given

a query, we need to:

Compute the risk of a query, which can be done in constant time O(1)

Check whether there are individuals that have the queried allele and a budget greater
than the risk, O(N)

If there is no such person, answer “No”, which can be done in constant time O(1)

If there is at least one, answer “Yes”, then reduce those people’s budget by the risk.

This can be done in linear time O(N).

So in total, the computational time required for each query on a beacon with mitigation
strategy S3 is linear with respect to the number of individuals in the beacon. We note that the

required time for S3 is the same as if no-privacy-preserving mechanisms were imposed.
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