When *not* to use adversarial examples

Florian Tramèr Google Brain & ETHZ

AAAI 2022 workshop on Adversarial Machine Learning and Beyond

The current state of adversarial examples

All models are vulnerable to some attack
The adversary can adapt to any defense

This sounds bad if you want to *defend* a model

All models are vulnerable to some attack
The adversary can adapt to any defense

https://elie.net/blog/ai/harnessing-ai-to-combat-fraud-and-abuse-ai-is-the-key-to-robust-defenses/ https://about.fb.com/news/2021/02/update-on-our-progress-on-ai-and-hate-speech-detection/ This sounds good if you want to *attack* a model

All models are vulnerable to some attack
The adversary can adapt to any defense

Maybe we can use adversarial examples for good!

Positive applications of adversarial ML, i.e., adversarial for good.

A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning

Thys et al. 2019

1) *protecting* against invasive models

2) *protecting* against privacy attacks

1) *protecting* against invasive models

2) protecting against privacy attacks

Big brother is watching you

The Secretive Company That Might End Privacy as We Know It

EXCLUSIVE Facial recognition company Clearview AI seeks first big deals, discloses research chief

Big brother Everyone is watching you

Technology This facial recognition website can turn anyone into a cop – or a stalker PinEyes Face Search Engine PimEyes **T** Q **Reverse Image Search** 39 results in 1.75s 🗟 Deep Search 速 🚖 🚳 🧃 10 archival results so far FACIAL RECOGNITION SEARCH TOOL. UPLOAD YOUR PHOTO AND https://fondation-zmb.. FIND WHERE IMAGES WITH YOUR FACE APPEAR ONLINE. Upload a photo Get access to archival results and Deep search for \$299.99/ma Πo FIND YOUR FACE ON THE INTERNET

Can adversarial examples save us from this dystopia?

"Fawkes: Protecting Privacy against Unauthorized Deep Learning Models", Shan et al., USENIX 2020 "LowKey: Leveraging Adversarial Attacks to Protect Social Media Users from Facial Recognition", Cherepanova et al., ICLR 2021

Ð

Poisoning facial recognition with adversarial examples

Users perturb the pictures they post online

Online pictures are scraped to build a model

Unperturbed test pictures aren't recognized

Unperturbed picture taken by the police, or a stalker, etc.

Misconception #1:

\forall models \exists attack \neq \exists attack \forall models

this is empirically true (so far)

Misconception #2:

The attacker can adapt to any defense

The problem (1): adaptive defenses

"Data Poisoning Won't Save You From Facial Recognition", ICLR 2022

The problem (2): retroactive defenses

Facial recognition provider scrapes pictures produced with attacks that target today's models Facial recognition provider trains new *better* model on poisoned data collected in the past

"Data Poisoning Won't Save You From Facial Recognition", ICLR 2022

Adversarial examples won't save us

"Data Poisoning Won't Save You From Facial Recognition", ICLR 2022

Are evasion attacks any better?

Ads · Shop adversarial tshirt

- (+) Here, the attacker can adapt to the facial recognition system
- (+) This works *against YOLO** !
- (-) What *guarantee* is there that this works against *any real system?*
- (-) Are we giving people a *false sense of security?*

1) *protecting* against invasive models

2) protecting against privacy attacks

1) *protecting* against invasive models

2) *protecting* against privacy attacks

Membership leakage from model confidence

"Membership Inference Attacks against Machine Learning Models", Shokri et al., IEEE S&P 2017

Defense idea: adversarial examples for distinguisher

"MemGuard: Defending against Black-Box Membership Inference Attacks via Adversarial Examples", Jia et al., CCS 2019

Misconception #1:

\forall models \exists attack \neq \exists attack \forall models

Misconception #2:

The attacker can adapt to any defense

Adaptive "defense": ignore the noise

"Label-Only Membership Inference Attacks", ICML 2021

What can we compute with label-only access?

- Model confidence
- Gradient norm

What can we compute with label-only access?

- Model confidence
- Gradient norm
- Distance to decision boundary?

Same as finding a "minimal norm" adversarial example !

What can we compute with label-only access?

- Model confidence
- Gradient norm
- Distance to decision boundary?

Same as finding a "minimal norm" adversarial example !

"Reliable Attacks Against Black-Box Machine Learning Models", Brendel et al., ICLR 2018

Adversarial confidences don't prevent inference

"Label-Only Membership Inference Attacks", ICML 2021 "Membership Inference Attacks From First Principles", preprint 2022

1) *protecting* against invasive models

2) *protecting* against privacy attacks

1) *protecting* against invasive models

2) protecting against privacy attacks

Evading research models vs. real systems

57.7% confidence

"gibbon" 99.3% confidence

How do we go from this...

Evading research models vs. real systems

Research:"imperceptible" perturbations
~95% white-box attacks/defenses
~5% black-box with query access~1% black-box without query-access

Real systems:>99% black-box without query-accessattacks need not be imperceptible

Real systems are black-box

Challenge: attack something like this

Not just an engineering exercise!

- you don't get direct query access...
- you get banned after a few bad queries...
- you likely can't build a good surrogate model...

1) *protecting* against invasive models

2) protecting against privacy attacks

1) *protecting* against invasive models

2) *protecting* against privacy attacks

Conclusion

Threat models matter! (who gets to go second?)

Be careful what promises you make to users

> Can we use adversarial examples for *something "real"*?