Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them

Florian Tramèr Stanford University

Thanks: Wieland Brendel, Nicholas Carlini, Alex Ozdemir

This robust classifier sounds implausible.

- Dataset: CIFAR-10
- Norm: ℓ_{∞}
- Bound: $\varepsilon = \frac{8}{255}$
- Robust accuracy: 80%

(current SOTA is $\sim 65\%$)

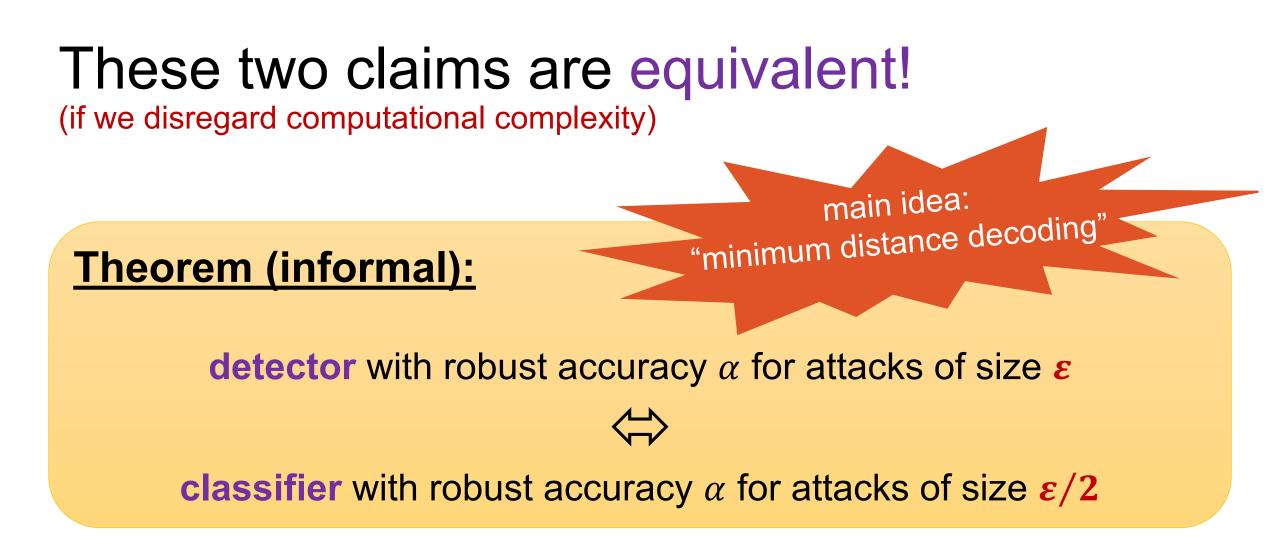
What about this robust detector?

- Dataset: CIFAR-10
- Norm: ℓ_{∞}
- Bound: $\varepsilon = \frac{16}{255}$

Robust detection accuracy: 80%

(current SOTA ???)

Defense is allowed to **abstain** if it detects an adversarial example



<u>Caveat:</u> the reduction is *computationally inefficient*

What is this reduction useful for? Theory: port *unconditional* results to detectors

Robust generalization [Schmidt et al., 2018]

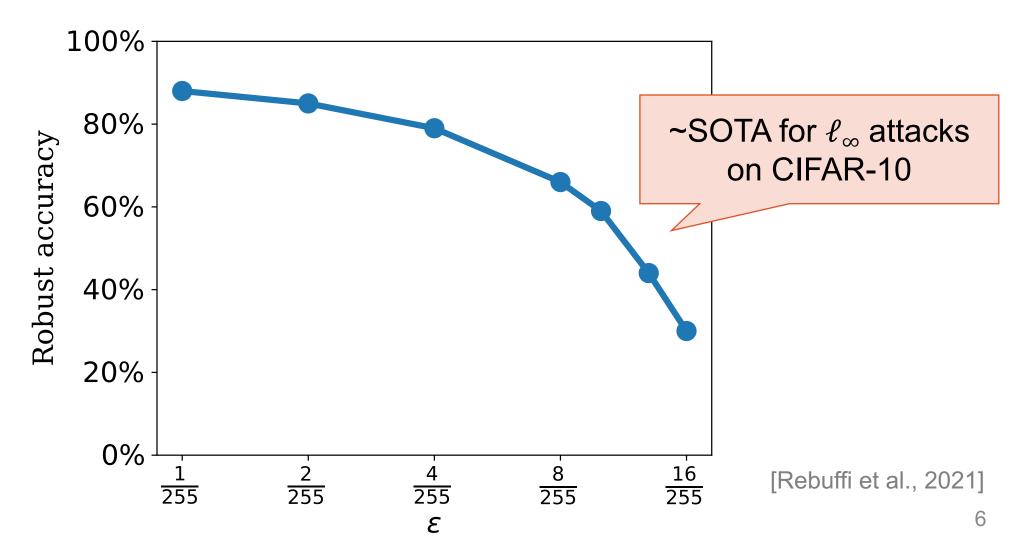
Accuracy-robustness tradeoff

[Tsipras et al., 2019, Zhang et al., 2019]

Multi-robustness tradeoff [T & Boneh, 2019, Maini et al., 2020]

Robustness vs error on noise [Ford et al., 2020]

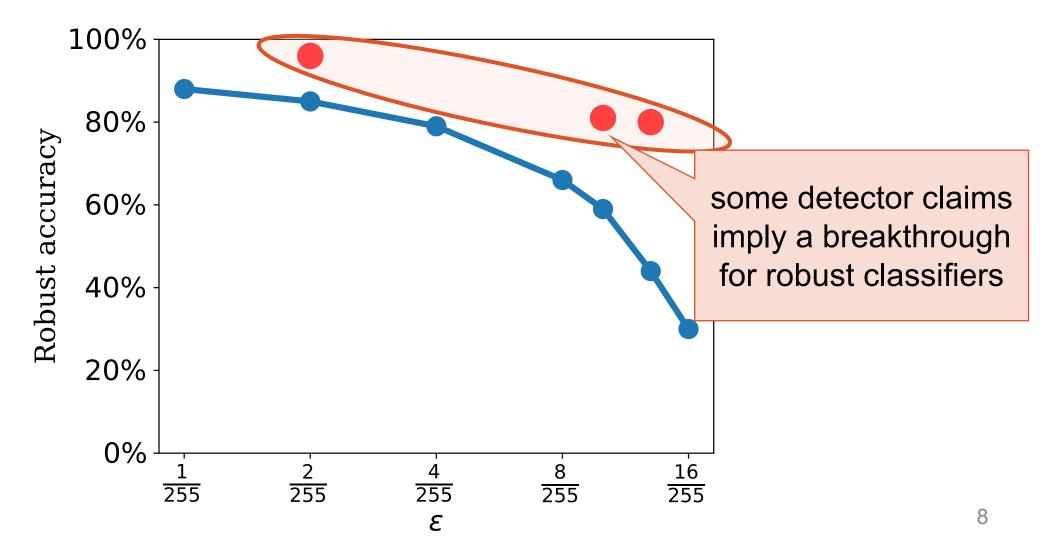
What is this reduction useful for? Practice: a sanity check for detector defenses.



What is this reduction useful for? Practice: a sanity check for detector defenses.



What is this reduction useful for? Practice: a sanity check for detector defenses.



if robust classification is hard, so is robust detection!

Open problems:

- ➢Is there an efficient detector ⇔ classifier reduction?
- What about detectors that claim conditional robustness?

