
Smart Contract Security
Florian Tramèr

Nicolas Kokkalis

Agenda
● Smart Contract Verification

○ Why? More examples of bugs!
○ How?

● Beyond bugs in code: networks, miners and incentives
○ Attacks by miners: reorder, delay, drop transactions
○ Front running
○ Commit-reveal & Submarine sends
○ Other mining attacks

● Randomness, Confidentiality, Authenticity, Fairness
○ Randomness and secrecy in public contracts
○ Confidential transactions & contracts
○ Data oracles
○ Fair exchange and crypto for crime

Smart Contract Verification: Why?
Pervasive bugs in an adversarial computation environment:

- All user input is arbitrary (overflows / underflows)
- Data/computation flow is non-trivial (reentrancy, deadlocks)
- Extra care about termination (gas costs)
- Tricky specifications...

Hildenbrandt et al.

Example: charity considered harmful
ERC20_ok {

uint256 num_tokens;

function totalSupply() {

return num_tokens;

}

}

ERC20_bad {

function totalSupply() {

return

this.balance;

}

}

“Recently” discovered bug/feature: send funds to contract via selfDestruct
without triggering default function. Also:

- mine to a contract
- send money to a not yet existent contract! (more on this later)

Smart Contract Verification: How?
1. Static or symbolic analysis of sourcecode / bytecode to find common

errors/anti-patterns
- Quite a few false-positives (not too bad for small contracts)
- Only finds things it knows to look for
- Won’t detect (most) logic errors

Examples:
- Oyente (https://github.com/ethereum/oyente)
- Securify (https://securify.ch/)
- Mythril (https://github.com/ConsenSys/mythril)
- Remix (http://remix.ethereum.org/)

https://github.com/ethereum/oyente
https://securify.ch/
https://github.com/ConsenSys/mythril
http://remix.ethereum.org/

Smart Contract Verification: How?
2. Verify code against a formal specification

- Lots of work (but probably worth it?)
- Requires a full formal semantics for the EVM
- Won’t catch specification-level bugs

Examples: KEVM
(https://github.com/kframework/evm-semantics)

https://github.com/kframework/evm-semantics

Dynamic Verification
- Runtime checks: e.g., underflow/overflow checks, see Vyper

- Hydra: multiversion programming for smart contracts (Breidenbach et al.)

Beyond Bugs in Code
Congrats, your contract is now bug free! (it isn’t)

What can miners do to undermine your contract?

- Delay, drop or reorder transactions
- No guarantee of “meaningful” total ordering of transactions

Only miners? No!

- Attacker can observe (maybe even tamper with) the network layer
- Attacker can bribe miners (or just pay higher transaction fees than you)

Reordering transactions: on-chain exchange

Exchange

Sell 10 tokens at 1 Eth

10 tokens

Buy 10 tokens at 2 Eth

20 Eth

Arbitrage / Frontrunning
Miner sees the following transactions to be mined:

- Sell 10 tokens for 1 Eth
- Buy 10 tokens for 2 Eth

1. Other users could achieve the same by
e.g., setting transaction fees
appropriately (if miners are honest)

2. Not typically illegal in finance but in
cryptocurrencies, miners are in an
(unfairly?) advantageous position

A miner can insert it’s own
transactions:

- Sell 10 tokens for 1 Eth
- Buy 10 tokens for 1 Eth
- Sell 10 tokens for 2 Eth
- Buy 10 tokens for 2 Eth

Profit!!!

Preventing Frontrunning with Commit-Reveal
● Cryptographic commitment:

○ Commit(msg, r) -> c => hides the message
○ Open(c, msg, r) -> {0, 1} => only evaluates to 1 if c == Commit(msg, r)
○ Example: H(msg || r)

● New exchange contract:
○ Accepts commitments of buy/sell orders. Stores commitment and block number
○ Accepts opening of order iff corresponding commitment is older than k blocks (e.g, 1h)

=> too late to frontrun

● Miner/user could “optimistically” frontrun:
○ Commit to many different orders
○ Only open the ones that are useful

=> need to make commits “expensive”: e.g., place funds in escrow and reimburse if opened

Hidden Commitments: Submarine sends
What if you don’t want others to know that you placed an order before its
confirmed (or too late to do anything about it)? E.g., useful in auctions

Solution: put your commitment “somewhere” on chain and later point back to it
=> how do we ensure commits are expensive?

Solution’: combine with “proof of burn”: e.g., send money to address 0x0
=> wasteful

Solution’’: send funds to “random” address so that they can later be re-claimed
=> Submarine sends

Hidden Commitments: Submarine sends

Submarine sends (post-Metropolis version):

1. Send your commit and funds to address
Addr = H(0x123,data,Forwarder)

2. Later, send the opening, and Addr to the
auction contract (at address 0x123)

3. The auction contract can spawn a
Forwarder at address Addr and
call it to recover the funds

Forwarder {

address addrContract = 0x123;

function () {

if (msg.sender == addrContract)

addrContract.send(this.balance);

}

}

Other mining attacks & incentive issues
Selfish mining (https://arxiv.org/abs/1311.0243)

- When miner finds a block, “sit on it” instead of directly announcing it
- If miner has a secret chain of ≥2 blocks, he can use it to invalidate other miners’ work
- In some settings, a miner with <½ hash power can control the whole network

Miner’s dilemma (https://arxiv.org/abs/1411.7099)
- Miners should verify transactions. But, no real incentive to do so
- Miners that don’t verify transactions can spend more time mining!

Cryptoeconomics (https://projectchicago.io/)
- How to properly price commodities used in blockchains (network, computation, etc.)?
- Gastoken: exploiting gas refunds for price arbitrage: (http://www.gastoken.io)
- Incentives at the P2P layer (https://ethresear.ch/t/incentivizing-a-robust-p2p-network-relay-layer/1438)

https://arxiv.org/abs/1311.0243
https://arxiv.org/abs/1411.7099
https://projectchicago.io/
http://www.gastoken.io
https://ethresear.ch/t/incentivizing-a-robust-p2p-network-relay-layer/1438

Randomness, Confidentiality, Authenticity, Fairness
- How can contracts make randomized, fair, unbiased decisions?

- How can contracts deal with confidential data?

- How do we get trusted data into contracts?

- How do we fairly exchange digital goods?

Randomness: Implementing a lottery
Use a “randomness beacon” to randomize the contract’s decision:

1. Use blockhash or block number
=> Miner can decide not to release a block to bias the randomness

2. Let users commit to randomness r1, …, rn. Then, open all the commitments
and use r = r1 + … + rn as a random seed
=> users can bias the results by not opening (needs penalties)

3. Promising approaches: proofs of delay, verifiable secret sharing
http://www.jbonneau.com/doc/BGB17-IEEESB-proof_of_delay_ethereum.pdf
https://eprint.iacr.org/2016/1067.pdf

http://www.jbonneau.com/doc/BGB17-IEEESB-proof_of_delay_ethereum.pdf
https://eprint.iacr.org/2016/1067.pdf

Confidentiality: A rock-paper-scissors game
Fun (and educational) read: https://eprint.iacr.org/2015/460.pdf

- If players send their action “in the clear”
=> wait for other player to go first
=> similar to frontrunning, so…

- Commit-reveal: both players commit to their action first. Then reveal.
=> losing player can abort

- Add penalties on abort, or a deadline after which we pay the honest party

https://eprint.iacr.org/2015/460.pdf

Confidentiality contd.
Commit-reveal works if data should be secret for a finite time period
- Actions in games, auction bids, market offers, etc.

More generally: confidential transactions
- Hide combination of source, destination, amount for transactions
- E.g., ZCash, Monero, Mixer networks, Bulletproofs, etc.

Data authenticity
- Today’s Dapps: Tokens & games

- Why? No need for external data…

- How to connect smart contracts with the “real world”?
=> Data oracles

Examples:
- Oraclize (http://www.oraclize.it/)
- Smartcontract (https://www.smartcontract.com/)
- TownCrier (http://www.town-crier.org/)

http://www.oraclize.it/
https://www.smartcontract.com/
http://www.town-crier.org/

Fairness
Fair exchange:
- Party A has input x, party B has input y
- Either A get y and B gets x or neither

Fair payment for digital goods: exchange cryptocurrency for data

Bitcoin: hash-locked transactions
- A sends Enc(k; data) and Proof(data = good AND H(k) = h) to B
- B creates a transaction that sends $$ to the party that provides a preimage of h

Issues:
- A can decide to abort, or B can decide that Proof is enough
- Requires off-chain interaction

Fair-Exchange with smart contracts
- B creates a contract with $$ asking for data
- A sends Enc(k; data) and Proof(data = good AND H(k) = h) to contract
- contract checks Proof and sends $$ to A

Example applications:

- Sealed Glass Proofs (https://eprint.iacr.org/2016/635)
Use smart contracts (and trusted hardware) for a fair bug-bounty scheme

- Criminal Smart Contracts (https://eprint.iacr.org/2016/358)
Fun read about (hypothetical) bad things you could trade with smart contracts

https://eprint.iacr.org/2016/635
https://eprint.iacr.org/2016/358

Crypto for crime
Cryptocurrencies are (pseudo)anonymous, decentralized, under regulated, ...
Good for crime!

- Ransomware

- Mining malware

- Wallet theft

- Illegal exchanges (e.g., Silk road)

- Hypothetical (or not) Criminal Smart Contracts:
- Selling secrets (e.g., Darkleaks in Bitcoin)
- E.g., compromised passwords, accounts, crypto keys
- Assassination, terrorism, etc.

Additional References
Best practices:

● http://solidity.readthedocs.io/en/v0.4.23/security-considerations.html
● https://consensys.github.io/smart-contract-best-practices
● https://paritytech.io/new-smart-contract-development-processes/

Miner attacks:
● http://hackingdistributed.com/2017/08/28/submarine-sends/
● http://hackingdistributed.com/2017/06/19/bancor-is-flawed/

http://solidity.readthedocs.io/en/v0.4.23/security-considerations.html
https://consensys.github.io/smart-contract-best-practices
https://paritytech.io/new-smart-contract-development-processes/
http://hackingdistributed.com/2017/08/28/submarine-sends/
http://hackingdistributed.com/2017/06/19/bancor-is-flawed/

