Ensemble Adversarial Training Attacks and Defenses

Cybersecurity With The Best October 15th 2017

> Florian Tramèr Stanford

Joint work with Alexey Kurakin (Google Brain) Nicolas Papernot (PSU) Dan Boneh (Stanford) Patrick McDaniel (PSU)

Adversarial Examples in ML

Pretty sure this is a panda I'm certain this is a gibbon

(Goodfellow et al. 2015)

Adversarial Examples in ML

- **Images** Szegedy et al. 2013, Nguyen et al. 2015, Goodfellow et al. 2015, Papernot et al. 2016, Liu et al. 2016, Kurakin et al. 2016, ...
- Physical Objects Sharif et al. 2016, Kurakin et al. 2017, Evtimov et al. 2017, Lu et al. 2017
- Malware Šrndić & Laskov 2014, Xu et al. 2016, Grosse et al. 2016, Hu et al. 2017
- Text Understanding Papernot et al. 2016, Jia & Liang 2017
- Speech Carlini et al. 2015, Cisse et al. 2017

Creating an adversarial example

What happens if I nudge this pixel?

Creating an adversarial example

What abppensif onedge this pixel?

Creating an adversarial example

What about this one?

Maximize loss with gradient ascent

Defenses?

- Ensembles
- Preprocessing (blurring, cropping, etc.)
- Distillation
- Generative modeling
- Adversarial training

X

Adversarial Training

Cybersecurity With The Best - Florian Tramèr

Adversarial Training - Tradeoffs

"weak" attack

single step

"strong" attack

many steps

Adversarial Training - Tradeoffs

"weak" attack

fast

"strong" attack

slow

Adversarial Training - Tradeoffs

"weak" attack

not infallible but scalable

"strong" attack

learn robust models on small datasets

Madry et al. 2017

Adversarial Training on ImageNet

• Adversarial training with single-step attack (Kurakin et al. 2016)

What's happening? Gradient Masking!

• How to get robustness to single-step attacks?

Loss of Adversarially Trained Model

Cybersecurity With The Best - Florian Tramèr

Loss of Adversarially Trained Model

Simple Attack: RAND+Single-Step

1. Small random step 2. Step in direction of gradient

What's wrong with "Single-Step" Adversarial Training?

Minimize:

self.loss(self.attack())

Solution:

- 1. The model is actually robust
- 2. Or, the attack is really bad

Degenerate Minimum Better approach? *decouple* attack and defense

Ensemble Adversarial Training

Results

ImageNet (Inception v3, Inception ResNet v2)

What about stronger attacks?

- Little gain on **strong white-box** attacks!
- But, improvements in black-box setting!

NIPS 2017: Defense Against Adversarial Attack

Create an image classifier that is robust to adversarial attacks

	KaggleTeamId	TeamName	Score
>	baseline_ens_adv_inception_renset_v2		71506
	816739	alekseynp	67409
	827701	rwightman	65464
	802555	tonyyy	65193
	baseline_adv_inception_v3		64648

Open Problems

- How far can we go with adversarial training?
 White-box robustness is possible! (Madry et al. 2017)
 - Caveat 1: Very expensive
 - Caveat 2: What is the right **metric** $(I_{\infty}, I_{2}, rotations)$?
- Can we say anything formal (and useful) about adversarial examples?

– Why do they exist? Why do they transfer?

THANK YOU

Related Work

Adversarial training + black-box attacks:

Szegedy et al.,	https://arxiv.org/abs/1312.6199	original paper on adversarial examples				
Nguyen et al.,	https://arxiv.org/abs/1412.1897	a genetic algorithm for adversarial examples				
Goodfellow et al.,	https://arxiv.org/abs/1412.6572	adversarial training with single-step attacks				
Papernot et al.,	https://arxiv.org/abs/1511.04508	the distillation defense				
Papernot et al.,	https://arxiv.org/abs/1602.02697	black-box attacks, model reverse-engineering				
Liu et al.,	https://arxiv.org/abs/1611.02770	black-box attacks on ImageNet				
Kurakin et al.,	https://arxiv.org/abs/1611.01236	adversarial training on ImageNet				
Tramer et al.,	https://www.usenix.org/conference/use	enixsecurity16/technical-sessions/presentation/tramer				
(model reverse-engineering)						
Madry et al.,	https://arxiv.org/abs/1706.06083	learning robust models with strong attacks				
Tramer et al.,	https://arxiv.org/abs/1705.07204	our paper				
Physical world:						
Sharif et al.,	https://dl.acm.org/citation.cfm?id=2978	fooling facial recognition with glasses				
Kurakin et al.,	https://arxiv.org/abs/1607.02533	physical-world adversarial examples				
Lu et al.,	https://arxiv.org/abs/1707.03501	self driving cars will be fine				

Estimov et al., <u>https://arxiv.org/abs/1707.08945</u>

maybe they won't!

Related Work (cont.)

Malware:

Srndic et al.,	https://dl.acm.org/citation.cfm?id=2650798	fooling a pdf-malware detector
Xu et al.,	https://www.cs.virginia.edu/yanjun/paperA	<u>14/2016-evade_classifier.pdf</u> (same as above)
Grosse et al.,	https://arxiv.org/abs/1606.04435	adversarial examples for Android malware
Hu et al.,	https://arxiv.org/abs/1702.05983	adversarial examples for Android malware

Text:

Papernot et al.,	<u>https://arxiv.org/abs/1604.08275</u>	adversarial examples for text understanding
Jia et al.,	<u>https://arxiv.org/abs/1707.07328</u>	adversarial examples for reading comprehension

Speech:

Carlini et al., <u>https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini</u> (fooling a voice assistant)

Cisse et al., <u>https://arxiv.org/abs/1707.05373</u>

adversarial examples for speech, segmentation, etc

Reinforcement Learning:

Huang et al.,https://arxiv.org/abs/1702.02284Kos et al.,https://arxiv.org/abs/1705.06452

adversarial examples for neural network policies adversarial examples for neural network policies