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Machine learning works.
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Machine learning works most of the time!
many applications tolerate occasional failures
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Machine learning can also fail disastrously.

guardian
" : Uber crash shows 'catastrophic failure’
Critical mistakes... of self-driving technology, experts say
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Machine learning can also fail disastrously.

guardian
Critical mistakes Uber crash shows 'catastrophic failure’
T of self-driving technology, experts say

_ Ehe New Jork imes
Direct attacks... Microsoft Created a Twitter Bot to Learn From
Users. It Quickly Became a Racist Jerk.




Machine learning can also fail disastrously.

guardian

Critical mistakes Uber crash shows 'catastrophic failure’
T of self-driving technology, experts say

_ Ehe New Pork Eimes
Direct attacks... Microsoft Created a Twitter Bot to Learn From
Users. It Quickly Became a Racist Jerk.

Does GPT-2 Know Your Phone Number?

Eric Wallace, Florian Tramer, Matthew Jagielski,
and Ariel Herbert-Voss

Private data leaks...



Challenge: understand and improve the
worst-case behavior of machine learning (ML)

Approach: study ML from
an adversarial perspective

» to Improve robustness
and privacy of ML in
adversarial settings

» 1o build ML that is better




This thesis
Measuring and Enhancing ML security

l.  Modeling the threat of adversarial examples

» Analysis: fundamental limits of existing defenses
» Application: circumventing online content blockers
(led to design changes in Adblock Plus)

Il. Enhancing data privacy for ML users

» At training time using differential privacy
» At test time using hardware enclaves and cryptography
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This thesis
Measuring and Enhancing ML security

l.  Modeling the threat of adversarial examples

» Analysis: fundamental limits of existing defenses
» Application: circumventing online content blockers
(led to design changes in Adblock Plus)

this talk!
Il. Enhancing data privacy for ML users

» At training time using differential privacy
» At test time using hardware enclaves and cryptography
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Talk outline.

* Adversarial examples for online content blockers
» What's the threat model?
» Limitations of current defenses
» Industry impact

* Enhancing ML privacy
* Future work
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What is Machine Learning (ML)?

collect some build a function (model) that learns how
“training” data to make predictions on new data

«“ » B =
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— "Cat" 90%

neural hetwork
(sequence of math transforms
applied to the input to assign a
"confidence” to each prediction)
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Adversarial examples: a curious bug in ML

[Szegedy et al. ‘13], [Biggio et al. “13], [Goodfellow et al. ‘14], ...

90% Tabby Cat Adversarial noise 100% Guacamole
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Finding adversarial examples.

confidence in the
“Cat” class

] Cat
Lynx
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Why do adversarial examples matter?

For understanding ML
» what is the model learning?
» why do brittle models generalize?

For security:
» will my ML system fail unexpectedly?
» can my ML system be attacked?

17



Adversarial examples as a computer
security problem.

T, Dupré, Rusak, Pellegrino, Boneh (ACM CCS 2019)

» adversarial examples are the perfect tool to attack online content blockers
» using ML for ad-blocking can break Web security
» this work led to design changes in Adblock Plus

Adblock Plus

100M active users
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Adversarial examples are a security threat for
online ad-blocking.
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Adversarial examples are a security threat for
online ad-blocking.
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Adversarial examples are a security threat for
online ad-blocking.
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An attacker can use adversarial examples to

evade content blocking.
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For now, the adversary wins!
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“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019



Adversarial examples can cause harm
beyond model evasion.

Adblock Plus wants to run a ML model on screenshots of your
entire Facebook feed.

... SO that
Tom’s post

gets blocked
Jerry uploads

malicious
content

“AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning”, ACM CCS 2019 24



Adversarial examples are a security threat for
online content blocking.
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Adversarial examples are a security threat for
online content blocking.
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Talk outline.

» Adversarial examples for online content blockers
» What's the threat model?
» Limitations of current defenses
» Industry impact

* Enhancing ML privacy
* Future work
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Why focus on content blocking?
Many systems can be fooled with adversarial examples.

content blockers
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Many systems can be fooled with adversarial examples.

content blockers facial recognition

Sharif et al. 2016
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content blockers facial recognition self-driving

Sharif et al. 2016 Eykholt et al. 2018
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Why focus on content blocking?
Many systems can be fooled with adversarial examples.

content blockers facial recognition self-driving voice assistants

Hey Siri!
open
evil.com

Sharif et al. 2016 Eykholt et al. 2018 Carlini et al. 2016

32


http://evil.com/

Why focus on content blocking?
Many systems can be fooled with adversarial examples.

content blockers facial recognition self-driving voice assistants

_:.;-’.J.' X _
€)> C 0 a youtube.com/ » O @ m » =

Hey Siri!
open
evil.com

Sharif et al. 2016 Eykholt et al. 2018 Carlini et al. 2016

|—'—l

[ Claim: adversarial examples are “overkill™ }
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http://evil.com/

Content blockers always operate in the
presence of a human.

content blockers facial recognition self-driving voice assistants

adversary wants to fool
the model to get content
shown to a human
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For other systems, security must hold
whether there Is a human observer or not.

content blockers facial recognition self-driving voice assistants

® adversary wants to

OO ,w fool the model...
adversary wants to fool X S @

the model to get content ...and there may be a
shown to a human human observer
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For such systems, security must also holad
against “conspicuous” attacks.

facial recognition

BUSINESS
INSIDER

36



For such systems, security must also holad
against “conspicuous” attacks.

facial recognition self-driving

BI l'{l S'5 Ilh[l)lé% S Olsson 2019
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For such systems, security must also holad
against “conspicuous” attacks.

facial recognition

BUSINESS
INSIDER

self-driving

ﬁ) Andy Weedman
@andyweedman
@karpathy @elonmusk @DirtyTesla here is a fun edge

case. My car kept slamming on the brakes in this area

with no stop sign. After a few drives | noticed the
billboard.

51 AM  55°F R Easy Entry  33: O —

Dashcam: Tuesday, April 13, 2021 21:35:21



For such systems, security must also holad
against “conspicuous” attacks.

facial recognition self-driving voice assistants

Alexa, set
alarm for
/am!

BI erl Sé Ilr;lDlI:'E’b;Q S Olsson 2019
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For such systems, security must also holad
against “conspicuous” attacks.

facial recognition self-driving voice assistants

Alexa, set
alarm for
/am!

BI lrf: '5S '|NDESR S Olsson 2019

Content blocking is the only application where “small”
perturbations are necessary for a successful attack.

40



Talk outline.

* Adversarial examples for online content blockers
» What's the threat model?
» Limitations of current defenses
» Industry impact

* Enhancing ML privacy
* Future work
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Can we build a robust ML model?

“Yes”, but only in a very restrictive “toy” setting,
that has little relevance for practical attacks,
and the best defense only works <50% of the time,
and most defenses don't work at all.

Short answer: No!

43



A formal model for robustness.

 Train a model f(-) on a distribution D of labelled inputs (x, y)

* The adversary perturbs test inputs x sampled from © with noise §

Which perturbations 6 do we allow? ' ambiguous, hard to formalize
- Ideal: any “semantically small” perturbation

44



A formal model for robustness.

 Train a model f(-) on a distribution D of labelled inputs (x, y)

* The adversary perturbs test inputs x sampled from © with noise §

Which perturbations 6 do we allow? Lmax EA
- Ideal: any “semantically small” perturbation
- Relaxation: perturbations § from a fixed set S [ Example: S = {5: (|5l < 20%)} ]

~

necessary but not sufficient
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A formal model for robustness.

 Train a model f(-) on a distribution © of labelled inputs (x, y)
* The adversary perturbs test inputs x sampled from © with noise §
Which perturbations § do we allow?

- Ideal: any “semantically small” perturbation
- Relaxation: perturbations § from a fixed set S [ Example: S = {5: (|5l < 20%)} ]

Ultimate goal:
- discover defensive techniques that generalize across perturbation sets



The state-of-the-art in robust ML.

MNIST digit classification [Lecunetal. ‘98]

» considered “solved” by ML » 0% accuracy when each pixel
(>99.5% accuracy) value can be perturbed by 20%

Ed
]

[Carlini & Wagner., 17



Most proposed defenses are broken!

[Carlini & Wagner ’'17], [Athalye et al. ’18], [T, Carlini, Brendel, Madry (NeurlPS 2020)], ...

» denoising

» randomization

» dimensionality reduction
» Input transformations

» generative modeling

» Bayesian learning

> ...
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Some defenses work.

» Adversarial training

e Certified defenses

[Szegedy et al. ‘“13], [Goodfellow et al. ‘“14], [Kurakin et al. “16], [T et al. ‘17],

[Madry et al. ‘18], [Zhang et al. “19], [Carmon et al. “19], [Uesato et al. ‘“19],
[Zhai et al. “19], [Shafahi et al. “19], [Yang et al. “19], [Li et al. 20], ...

[Katz et al. ‘“17], [Wong et al. ‘“17], [Raghunathan et al. ‘18], [Gehr et al. ‘18],
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. 18], [Weng et al. ‘19],
[Baluta et al. “19], [Cohen et al. “19], [Singh et al. “19], [Gluch et al. 20], ...
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Some defenses work, but don’t generalize...

» Adversarial training  [szegedy st al. *13], [Goodfellow et al. “14], [Kurakin et al. ‘16], [T et al. “17],
[Madry et al. ‘18], [Zhang et al. “19], [Carmon et al. “19], [Uesato et al. ‘“19],
[Zhai et al. “19], [Shafahi et al. “19], [Yang et al. “19], [Li et al. 20], ...

° Certlfled defenseS [Katz et al. ‘“17], [Wong et al. ‘17], [Raghunathan et al. ‘18], [Gehr et al. ‘18],
[Lecuyer et al. ‘18], [Zhang et al. ‘18], [Mirman et al. 18], [Weng et al. ‘19],

[Baluta et al. “19], [Cohen et al. “19], [Singh et al. “19], [Gluch et al. 20], ...

recall: we only consider perturbations 6 from a fixed set S

issue: all defenses above are explicitly tailored to a chosen set S

g : N — _ ~
defenses overfit to the chosen set generalizing to richer
T, Behrmann, Carlini, Papernot, Jakobsen sets hurts robustness

(ICML 2020) ) \_T & Boneh (NeurlPS 2019 spotlight) |

\_
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Adversarial training: a defense for a fixed
perturbation set.

[Szegedy et al., "14], [Goodfellow et al., ‘15], [Madry et al., "17] _ .
M—plxel noise J

1. Choose a set S of perturbations: e.g., S = {5:|5]|., < 20%}

2. For each inputl}, find the worst adversarial example:
3. Train the model on

: all images in the
4. Repeat until convergence 2 0

set are classified
I
/

aS “1”
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Defenses fall for noise outside the chosen set.

[Engstrom et al., "17], [Sharma & Chen, "18]
Mrturbed pixels}

> Attack with a perturbation from S" = {6:||6]|; < 12}

52




Why not learn to resist multiple noise types?
T & Boneh (NeurlPS 2019 spotlight)

1. Choose multiple sets of perturbations 5,5, ...
2. Train a model against worst perturbation from S, U S, U ...
Sy ={6:161l, < 20%} S, ={6: 16, = 12}

pick worst-case 5{5
noise from S, v

pick worst-case
noise from S,
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Resisting multiple noise types Is costly.
T & Boneh (NeurlPS 2019 spotlight)

1. Choose multiple sets of perturbations 5,5, ...
2. Train a model against worst perturbation from S, U S, U ...

100

(=)

>, 80 [ +130% error rate! ]
= 3 60
Z & 40
=5 5

—

E ) o

defend against defend against defend against
perturbations from S, perturbations from S, perturbations from S; U S,
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Can adversarial training solve adversarial
examples?

recall our ultimate goal:
defenses that are robust to any “small" perturbation

» adversarial training requires knowing the perturbation set a priori

Theorem (informal): [T, Behrmann, Carlini, Papernot, Jakobsen, ICML 2020]

Finding a “complete” perturbation set is as hard as building a “perfect” classifier.

55



Take away: we don’t have robust machine
learning in adversarial settings.

= THE WALL STREET JOURNAL. Q

Facebook, YouTube, Twitter Scramble
to Remove Video of New Zealand
Mosque Shooting

MOTHERBOARD
TECHBY VICE

Researchers Defeat Most Powerful Ad
Blockers, Declare a ‘New Arms Race’
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Take away: we don’t have robust machine

learning in adversarial settings.

But, we now have:

1. industry awareness
of security risks

ABP] AdblockPlus

2. understanding of inherent
limitations of defenses

& brave
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Adblock Plus and (a little) more

Sentinel is Online
- 2018-06-27 16:05 by Tom Woolford

Are you ready to feed the machine?

R/ SENTINE

60
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Researchers Defeat Most
Powerful Ad Blockers, Declare a
‘New Arms Race’



Adblock Plus 3.6.2 is Out and With Interesting Updates

Adblock Plus

Because of the obvious limitations of Sentinel, we came up with a highly-usable perceptual ad-
blocking approach, in the form of the newly released perceptual hashing snippet. It does not use
any machine-learning techniques per se, but it marks a first ever perceptual ad-blocking approach
in production, and allows us to grow in an innovative way.

AdChoices > AdChoices >

Goal: detect ad disclosures Problem: these techniques
using image hashes are not robust either




Where are the names
Anonymous Coward an hour ago

Seriously? Where are the names of these scumbagsAd
researchers. I'm driving down to Stanford, stopping by a Home
Depot to pick a 2x4, a bag of lye and a shovel. Will have some
very intimate conversations with these "researchers"

Reply 5he Shut down unethical project #

impredicative opened this issue 20 days ago - 0 comments

‘ impredicative commented 20 days ago « edited ~ T

Florian Tramér,

This project seems grossly unethical and it should be shut down. Are the department head and dean at
Stanford University aware of this unethical work?
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* Future work
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» Industry impact

 Enhancing ML privacy
* Future work
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ML models are often trained on private data.
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Challenge: models leak their training data.

Carlini, T, Wallace, Jagielski, Herbert-Voss, Lee et al. (preprint 2020)

Prefix
[random mpm } _______________________ g East Stroudsburg Stroudsburg... ]

fOpenAI’s language model
trained on text from 8

kmiIIion web pages

Y

----------------------- > [ GPT-2 J

)

[ Memorized text ] l

-

output by the model
k(redacted for privacy)

someone’s contact information

Hor oration

.com

)




Data leaks have dramatic consequences!

for users...

for companies...

€he New Hork Times
Data Breach Victims Talk of Initial
Terror, Then Vigilance

et

Facebook could face $1.63bn fine under
GDPR over latest data breach

T|: TechCrunch

FTC settlement with Ever orders data and
Als deleted after facial recognition pivot
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Preventing data leakage with decade-old ML
T & Boneh (ICLR 2021 spotlight)

» provably prevent leakage of training data.
using differential privacy

Extensions: distributed or federated learning
[Dean et al. “12], [McMahan et al. ‘16], [Lian et al. ‘17]

» better accuracy than with deep learning methods.
using domain-specific feature engineering
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Differential privacy prevents data leakage.

[Dwork et al. ‘006]

intuition: randomized training algorithm is not influenced
(too much) by any individual data point

for any two datasets that
' differ in a single element
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Differentially private learning is possible with
noisy gradient descent.

Gradient descent

add noise to each step
to guarantee privacy

Private gradient descent

[Chaudhuri et al., “11], [Bassily et al. ‘14],
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...
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Non-private deep learning can achieve
near-perfect accuracy.

~—~
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Differentially private deep learning
lowers accuracy significantly.

CIFAR-10
Test Accuracy (

/N

V4

< 100+
90 -
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70 -
60 -
50 -
40
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=>&= no privacy /
—-@®- DP (e =3) 2

“deep learning era”
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Differentially private deep learning

lowers accuracy significantly.

CIFAR-10
Test Accuracy (

/N

V4

< 100+
90 -
80 1
70
60 -
50 -
40

30

\ /
A

-40% accuracy!\

worse than pre-
\ deep learning y
p
/
—>&— no privacy //
—-@®- DP (e =3) _®
, — , P
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“deep learning era”
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Differential privacy without deep learning
Improves accuracy.

/N

< 100+ VEEROE = o
é 0. T
- : ] !]
S g - [our work: no deep learning
|
X S 70 ) ¢
e G T o o
- /
O < 50 —>— no privacy /
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“deep learning era”
“Differentially private learning needs better features”, ICLR 2021 spotlight 75



Privacy-free features from “old-school”
Image recognition.

SIFT [Lowe ‘99, ‘04], HOG [Dalal & Triggs ‘05], SURF [Bay et al. ‘06], ORB [Rublee et al. “11], ...
Scattering transforms: [Bruna & Mallat ‘11], [Oyallon & Mallat ‘14], ...
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“handcrafted features” simple classifier
(no learning involved) (e.g., logistic regression)

‘ captures some prior about
the domain: e.g., invariance
under rotation & scaling 76

privacy free ’



Handcrafted features lead to a better
tradeoff between accuracy and privacy.

CIFAR-10
Test Accuracy (%)

—J
-

oN
-

Ot
-]

.
()

- —
*l‘I—IN.\.
\.
________
~ -
h~\~~‘
\\
Ry
\\
— = handcrafted features .
=== deep learning
3 2 1

e-Differential Privacy

“Differentially private learning needs better features”, ICLR 2021 spotlight
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Handcrafted features lead to an easier
learning task (for noisy gradient descent).

4 N

high accuracy

o
classifier exists but " ‘/_\ |
learning takes /\@ /
many gradient steps ° ® o
- /

| Input Space Feature Space

bad for privacy

“Differentially private learning needs better features”, ICLR 2021 spotlight

-

~

in feature space,

maximal accuracy is
reduced but learning

progresses faster

L

good for privacy
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Surpassing handcrafted features with
more private data.

(fore =3) o 80

I'e — & = deep learning
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Training Set Size N

“Differentially private learning needs better features”, ICLR 2021 spotlight



Surpassing handcrafted features with
more private data.

(fore =3) 580
é R -—0—:"“‘
>, 70 — i
O
(0
| -
3 6071 o~ &
8 CIFAR-10
< o0 7 —& - handcrafted features
g x — & - deep learning
— 40

10K 25K 50K 100K 250K 550K
Training Set Size N

“Differentially private learning needs better features”, ICLR 2021 spotlight



Surpassing handcrafted features with
more private data.

(fore =3) o580

> 70 D

O )/ A’,

O ‘ P e With 10x more private
collecting more Cd A7 data end-to-end deep
data is good for /‘/’ learning performs best

your privacy! 7 —® - handcrafted features
x” — & = deep learning

10K 25K 50K 100K 250K 550K
Training Set Size N

“Differentially private learning needs better features”, ICLR 2021 spotlight 81



Surpassing handcrafted features with

more public data.
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private data

“Differentially private learning needs better features”, ICLR 2021 spotlight

-

train a feature extractor
on public data...

.transfer and fine-
tune on private data
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With access to a public dataset,

privacy comes almost for free!
A~~~
100 -
DN
o N
— L>j’ 80 - 5% gap!
|
Y O 70 - with unlabeled ImageNet *
<L 8 as the public data
— < === no privacy /
O V7 —@= DP (e =3) /
4+ _ /
$ 401 %  DP + public data P
-
— % NI
P AP AR/ >
NN NN R NN

“Differentially private learning needs better features”, ICLR 2021 spotlight
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» What's the threat model?
» Limitations of current defenses
» Industry impact

 Enhancing ML privacy
* Future work
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Future work.
ML security is a critical challenge for our society.

how do we make ML trustworthy?
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Future work: robustness & privacy

Intersections:
- Adversarial ML for safequarding
or breaching privacy

Scaling private ML.:
- Privacy in large NLP models

- Relaxing differential privacy

Beyond machine learning:
- Robustness & privacy in
decentralized finance

with Evani Radiya-Dixit
with Nicholas Carlini @ Google

with Percy Liang
with llya Mironov @ Facebook

with Ari Juels @ Cornell
with Kenny Paterson @ ETHZ
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Conclusion

ML is currently not frustworthy.
- it Is not robust.
- It Is not private.

We can get better robustness than current ML.
» humans are an existence proof.

We can get better privacy than current ML.
» with differential privacy and feature engineering.
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