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First they came for images…
The Deep Learning Revolution



The Deep Learning Revolution
And then everything else…



The ML Revolution
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Including things that likely won’t work…



Blockchain

What does this mean for privacy & security?
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Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.
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(Szegedy et al. 2013, Goodfellow et al. 2015)

Pretty sure this 
is a panda

I’m certain this 
is a gibbon

ML models make surprising mistakes



Attacks on cyber-physical systems
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(Carlini et al. 2016, 
Cisse et al. 2017)

(a) (b) (c) (d)

Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows S
A

(top) and S
B

(bottom) dodging
against DNN

B

. Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows S

A

impersonating Milla Jovovich (by Georges Biard
/ CC BY-SA / cropped from https://goo.gl/GlsWlC); (c) S

B

impersonating S
C

; and (d) S
C

impersonating Carson Daly (by
Anthony Quintano / CC BY / cropped from https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by S
C

for dodging recog-
nition against DNN

B

.

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNN

C

; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to c

t

must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, S

B

’s success
rate when attempting to fool DNN

B

and impersonate S
C

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNN

B

, the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For N

I

images used in the optimizations and N
C

connec-
tions in the DNN, the time complexity of each GD iteration
is O(N

I

⇤N
C

). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.
We next briefly describe a commercial FRS that we use in

our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.
To train the Face++ model, we used the same training

data used for DNN
B

in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .

(Sharif et al. 2016)

(Kurakin et al. 2016)
(Athalye et al. 2018)

(Eykholt et al. 2017)

(Eykholt et al. 2018)



Where are the defenses?
• Adversarial training 

Szegedy et al. 2013, Goodfellow et al. 2015, 
Kurakin et al. 2016, T et al. 2017, 
Madry et al. 2017, Kannan et al. 2018

• Convex relaxations with provable guarantees
Raghunathan et al. 2018, Kolter & Wong 2018, Sinha et al. 2018

• A lot of broken defenses…
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Prevent “all/most 
attacks” for a 

given norm ball



Current approach:
1. Fix a ”toy” attack model (e.g., some l∞ ball) 

2. Directly optimize over the robustness measure
Þ Defenses do not generalize to other attack models
Þ Defenses are meaningless for applied security

What do we want?
• Model is “always correct” (sure, why not?)

• Model has blind spots that are “hard to find”
• “Non-information-theoretic” notions of robustness?
• CAPTCHA threat model is interesting to think about
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Do we have a realistic threat model? (no…)



ADVERSARIAL EXAMPLES
ARE HERE TO STAY!

For many things that humans can do 
“robustly”, ML will fail miserably!
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Ad blocking is a “cat & mouse” game
1. Ad blockers build crowd-sourced filter lists
2. Ad providers switch origins
3. Rinse & repeat

(4?) Content provider (e.g., Cloudflare) hosts the ads

A case study on ad-blocking
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New method: perceptual ad-blocking (Storey et al. 2017)

• Industry/legal trend: ads have to be clearly indicated  
to humans

A case study on ad-blocking

”[…] we deliberately ignore all signals 
invisible to humans, including URLs 
and markup. Instead we consider visual 
and behavioral information. […] We 
expect perceptual ad blocking to be 
less prone to an "arms race."

(Storey et al. 2017)

If humans can detect ads, so can ML!



Detecting ad logos is not trivial 

No strict guidelines, or only loosely followed:
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Fuzzy hashing + OCR (Storey et al. 2017)

Þ Fuzzy hashing is very brittle (e.g., shift all pixels by 1)

Þ OCR has adversarial examples (Song & Shmatikov, 2018)

Unsupervised feature detector (SIFT)
Þ More robust method for matching 

object features (“keypoints”)

Deep object detector (YOLO)
Þ Supervised learning

T
h
is

 t
a
lk



Browser
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Webpage

Ad 
blocker

Content 
provider

Ad 
network

Vivamus vehicula leo a 
justo. Quisque nec 
augue. Morbi mauris wisi, 
aliquet vitae, dignissim 
eget, sollicitudin molestie,

Vivamus vehicula leo a 
justo. Quisque nec augue. 
Morbi mauris wisi, aliquet 
vitae, dignissim eget, 
sollicitudin molestie,

What’s the threat model for perceptual ad-
blockers?
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What’s the threat model for perceptual ad-
blockers?
Pretty much the worst possible!

1. Adblocker is white-box (browser extension)
Þ Alternative would be a privacy & bandwidth nightmare

2. Adblocker operates on (large) digital images

3. Adblocker needs to resist adversarial examples 
and “DOS” attacks

Þ Perturb ads to evade ad blocker
Þ Punish ad-block users by perturbing benign content

4. Updating is more expensive than attacking
18



An interesting contrast: CAPTCHAs

Deep ML models can solve text CAPTCHAs

ÞWhy don’t CAPTCHAs use adversarial examples?
ÞCAPTCHA ≃ adversarial example for OCR systems

19

Model access Vulnerable to DOS Model 
Distribution

Ad blocker White-box Yes Expensive

CAPTCHA
“Black-box”

(not even query access)
No Cheap

(None)



BREAKING PERCEPTUAL
AD-BLOCKERS WITH

ADVERSARIAL EXAMPLES
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SIFT: How does it work? (I don’t know  exactly e ither)

21



Attack examples: SIFT detector
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• No keypoint matches between the two logos
• Attack uses standard black-box optimization

Þ Gradient descent with black-box gradient estimates
Þ There’s surely more efficient attacks but SIFT is complicated… 

original ad perturbed logo



Attack examples: SIFT Denial Of Service
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• Logos are similar in gray scale but not in color space

• Alternative: high confidence matches for visually close
—yet semantically different—objects



Attack examples: YOLO object detector
Object detector trained to recognize AdChoice logo

Þ Test accuracy is >90%
Þ 0% accuracy with l∞ perturbations ≤ 8/256

Similar but simpler task than Sentinel (Adblock Plus)
Þ Sentinel tries to detect ads in a whole webpage
Þ For now, it breaks even on non-adversarial inputs…
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Hussain et al. 2017: Train a generic ad/no-ad 
classifier (for sentiment analysis)

ÞAccuracy around 88% !

Þ0% accuracy with l∞ perturbations ≤ 4/256
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Perceptual ad-blockers without ad-indicators

+ 0.01 ⨉ =

“Ad” “No Ad”



Conclusion
Adversarial examples are here to stay

• No defense can address realistic attacks
• A truly robust defense likely implies a huge 

breakthrough in non-secure ML as well

Security-sensitive ML seems hopeless if 
adversary has white-box model access

• Ad-blocking ticks most of the “worst-case” boxes
• ML is unlikely to change the ad-blocker 

cat & mouse game

26TH
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