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“Unfair” associa4ons + consequences
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“Unfair” associa4ons + consequences
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These	are	so#ware	bugs:	need	to	ac#vely	test	for	them	
and	fix	them	(i.e.,	debug)	in	data-driven	applicaSons…	
just	as	with	func#onality,	performance,	and	reliability	bugs.	



Unwarranted Associa4ons Model
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Data-driven	
applicaSon	User	inputs	 ApplicaSon	outputs	

Protected	
inputs	



Limits of preventa4ve measures


What	doesn’t	work:	
• Hide	protected	aUributes	from	data-driven	applicaSon.	
• Aim	for	staSsScal	parity	w.r.t.	protected	classes	and	service	output.	

Foremost	challenge	is	to	even	detect	these		
unwarranted	associaSons.	
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A Framework for Unwarranted Associa4ons


1.  Specify	relevant	data	features:	
•  Protected	variables 	 	 	 	 	(e.g.,	Gender,	Race,	…)	
•  “USlity”:	a	funcSon	of	the	algorithm’s	output		 	(e.g.,	Price,	Error	rate,	…)	
•  Explanatory	variables 	 	 	 	 	(e.g.,	QualificaSons)	
•  Contextual	variables 	 	 	 	 	(e.g.,	LocaSon,	Job,	…)	

2.  Find	sta6s6cally	significant	associa6ons	between	protected	
aUributes	and	uSlity	
•  Condi#on	on	explanatory	variables	
•  Not	Sed	to	any	parScular	sta#s#cal	metric	(e.g.,	odds	raSo)	

3.  Granular	search	in	seman6cally	meaningful	subpopula6ons	
•  Efficiently	list	subgroups	with	highest	adverse	effects	
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FairTest: a tes4ng suite for data-driven apps


race,	gender,	…	

zip	code,	job,	…	

qualificaSons,	…	

Protected	vars.	
Context	vars.	 FairTest	

AssociaSon	bug	
report	for	developer	

Explanatory	vars.	

Data-driven	
applicaSon	User	inputs	 ApplicaSon	outputs	

•  Finds	context-specific	associaSons	between	protected	variables	and	
applicaSon	outputs,	condiSoned	on	explanatory	variables	
• Bug	report	ranks	findings	by	assoc.	strength	and	affected	pop.	size	
	 locaSon,	click,	…	 prices,	tags,	…	
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A data-driven approach


Core	of	FairTest	is	based	on	staSsScal	machine	learning	

FairTest	
Find	context-specific	associaSons	

StaSsScally	validate	associaSons	

Sta6s6cal	machine	learning	internals:	
•  top-down	spaSal	parSSoning	algorithm	
•  confidence	intervals	for	assoc.	metrics	
•  …	

Training	data	

Test	data	

Ideally	sampled	from	
relevant	user	populaSon	

Data	
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protected features and a large set of candidate outputs. We
thus propose a new regression-based metric that efficiently
estimates the strength of the association between protected
attributes and each output label and allows the identification
of the most highly associated labels. In this sense, Discovery
requires little a priori knowledge of what could constitute
an association bug or what subpopulations it might affect.
Error Profiling. The relationship between Error Profiling
and fairness is best seen under the lens of user utility: For
many applications where fairness is commonly a concern
(e.g., hiring), the outcomes O (the hiring decision) provide
similar utility to all users (the candidates). Testing for unfair-
ness can thus be reduced to testing for associations between
O and S. In contrast, an output from a predictive classifier
is often only as useful to a user as it is reasonably correct.
Thus, a classifier may unfairly impact a given subpopulation
by consistently providing users with wrong predictions.

Error Profiling can be seen as an instance of a more
general form of Testing, where the quantity tested for as-
sociations is not the algorithm’s output, but each user’s
utility. This primitive illustrates how the UA framework can
be applied to a varied range of fairness issues, simply by
adapting the semantics of the values tested for associations.

4. The FairTest Design

We describe the design of FairTest, a system that realizes
the UA framework methodology. Fig.1 shows the FairTest
architecture. To test her application for unwarranted associa-
tions, a developer supplies FairTest with a dataset consisting
of attributes from application users, along with the outputs
(or derived quantities) for those users. This corresponds to
the first step of the UA methodology. FairTest analyzes
this data and returns an association report that lists strong
associations that FairTest has found between protected at-
tributes S and outputs O. The developer inspects the report
and determines which reported associations are real bugs
that require fixing and which are admissible effects in her
context. After giving a concrete example of association
report, we detail FairTest’s architecture and illustrate how
it realizes the remaining steps of the UA methodology.

4.1. Association Report Example
Suppose that Staples’ developers wished to inspect their

pricing scheme’s impact on users before deploying it (e.g.,
to avoid bad publicity or for accountability purposes). To
do so, they could use U.S. census statistics [45] to emu-
late users with realistic demographics visiting their website
from various locations. They would run their location-based
pricing scheme for those users and use FairTest’s Testing
investigation to test for disparate impact on race or income.

We ran an investigation on a simulated pricing scheme
akin to Staples’, which gives discounts to users located
within 20 miles of competing OfficeDepot stores. Fig.2
shows part of FairTest’s bug report, generated by testing for
suspected differential pricing based on income. The report
lists statistically significant associations discovered between

Report of associations of O=Price on Si=Income:
Assoc. metric: norm. mutual information (NMI).

Global Population of size 494,436
p-value=3.34e-10 ; NMI=[0.0001, 0.0005]

Price Income <$50K Income >=$50K Total
High 15301 (6%) 13867 (6%) 29168 (6%)
Low 234167(94%) 231101(94%) 465268 (94%)
Total 249468(50%) 244968(50%) 494436(100%)

1. Subpopulation of size 23,532
Context={State: CA, Race: White}
p-value=2.31e-24 ; NMI=[0.0051, 0.0203]

Price Income <$50K Income >=$50K Total
High 606 (8%) 691 (4%) 1297 (6%)
Low 7116(92%) 15119(96%) 22235 (94%)
Total 7722(33%) 15810(67%) 23532(100%)

2. Subpopulation of size 2,198
Context={State: NY, Race: Black, Gender: Male}
p-value=7.72e-05 ; NMI=[0.0040, 0.0975]

Price Income <$50K Income >=$50K Total
High 52 (4%) 8 (1%) 60 (3%)
Low 1201(96%) 937(99%) 2138 (97%)
Total 1253(57%) 945(43%) 2198(100%)

...more entries (sorted by decreasing NMI)...

Figure 2. Sample Association Bug Report. Testing investigation of
disparate impact in Staples pricing simulation.

protected attribute ‘income’ and output ‘price’ in vari-
ous subpopulations. Association strength is measured with
normalized mutual information (NMI), one of the canonical
measures of statistical dependence implemented in FairTest.

The report shows three populations: the global popula-
tion is first, followed by the two subpopulations exhibiting
the strongest disparities (highest NMI). Subpopulations are
defined by user attributes: white people in California (first
subpopulation) and black men in New York (second subpop-
ulation). For each (sub)population, FairTest reports varied
statistical information: a p-value (a measure of statistical
significance, with a value below 5% generally considered
statistically significant), a confidence interval for the NMI
metric, and a contingency table that summarizes the fre-
quency distribution of the outputs over the (sub)population.

Results can be read from these tables as follows. For
the first subpopulation: among California’s white population
(23,532 people in our test set), 7,722 (or 33%) have an
income below $50K. Out of these 7,222 users, 606 (or 8%)
got the high price and the rest (92%) got a discount.

The report can be interpreted as follows: “At global
U.S. population level, the disparate impact of the pricing
scheme against lower-income users is nearly zero (NMI is
close to zero for the global population; low-income and
high-income users receive high prices in similar proportion,
6%). Yet, disparities are much stronger among white people
in California (first subpopulation), where 8% of lower-
income people get higher prices vs. only 4% of higher-
income people. Strong disparities also exist for black men
in New York (second subpopulation): 4% of lower-income
black men get higher prices vs. 1% for higher-income black
men.” As remediation, a programmer may decide to alter
her pricing scheme, e.g., to disable price tuning in affected
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locaSon	based	pricing	
scheme	

•  Test	for	disparate	impact	on	
low-income	popula6ons	

•  Low	effect	over	whole	US	
populaSon		

•  High	effects	in	specific	sub-
populaSons	
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Context={State: CA, Race: White}
p-value=2.31e-24 ; NMI=[0.0051, 0.0203]

Price Income <$50K Income >=$50K Total
High 606 (8%) 691 (4%) 1297 (6%)
Low 7116(92%) 15119(96%) 22235 (94%)
Total 7722(33%) 15810(67%) 23532(100%)

2. Subpopulation of size 2,198
Context={State: NY, Race: Black, Gender: Male}
p-value=7.72e-05 ; NMI=[0.0040, 0.0975]

Price Income <$50K Income >=$50K Total
High 52 (4%) 8 (1%) 60 (3%)
Low 1201(96%) 937(99%) 2138 (97%)
Total 1253(57%) 945(43%) 2198(100%)

...more entries (sorted by decreasing NMI)...

Figure 2. Sample Association Bug Report. Testing investigation of
disparate impact in Staples pricing simulation.

protected attribute ‘income’ and output ‘price’ in vari-
ous subpopulations. Association strength is measured with
normalized mutual information (NMI), one of the canonical
measures of statistical dependence implemented in FairTest.

The report shows three populations: the global popula-
tion is first, followed by the two subpopulations exhibiting
the strongest disparities (highest NMI). Subpopulations are
defined by user attributes: white people in California (first
subpopulation) and black men in New York (second subpop-
ulation). For each (sub)population, FairTest reports varied
statistical information: a p-value (a measure of statistical
significance, with a value below 5% generally considered
statistically significant), a confidence interval for the NMI
metric, and a contingency table that summarizes the fre-
quency distribution of the outputs over the (sub)population.

Results can be read from these tables as follows. For
the first subpopulation: among California’s white population
(23,532 people in our test set), 7,722 (or 33%) have an
income below $50K. Out of these 7,222 users, 606 (or 8%)
got the high price and the rest (92%) got a discount.

The report can be interpreted as follows: “At global
U.S. population level, the disparate impact of the pricing
scheme against lower-income users is nearly zero (NMI is
close to zero for the global population; low-income and
high-income users receive high prices in similar proportion,
6%). Yet, disparities are much stronger among white people
in California (first subpopulation), where 8% of lower-
income people get higher prices vs. only 4% of higher-
income people. Strong disparities also exist for black men
in New York (second subpopulation): 4% of lower-income
black men get higher prices vs. 1% for higher-income black
men.” As remediation, a programmer may decide to alter
her pricing scheme, e.g., to disable price tuning in affected
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Associa4on-Guided Decision Trees


Goal:	find	most	strongly	affected	user	sub-populaSons	

10	

…	

OccupaSon	A	

B	

C	

…	 …	
Age	

<	50	 ≥	50	

Split	into	sub-populaSons	with	
Increasingly	strong	associaSons	
between	protected	variables		
and	applica6on	outputs	



Associa4on-Guided Decision Trees


•  Efficient	discovery	of	contexts	with	high	associaSons	
•  Outperforms	previous	approaches	based	on	frequent	itemset	mining	
•  Easily	interpretable	contexts	by	default	
•  AssociaSon-metric	agnosSc	

•  Greedy	strategy	(some	bugs	could	be	missed)	

11	

Metric	 Use	Case	

Binary	raSo/difference	 Binary	variables	
Mutual	InformaSon	 Categorical	variables	
Pearson	CorrelaSon	 Scalar	variables	
Regression	 High	dimensional	outputs	
Plugin	your	own!	 ???	



Example: healthcare applica4on


Predictor	of	whether	pa6ent	will	visit	hospital	again	in	next	year	
(from	winner	of	2012	Heritage	Health	Prize	CompeSSon)	
FairTest	findings:	strong	associaSon	between	age	and	predicSon	error	rate	

AssociaSon	may	translate	to	quanSfiable	harms	
(e.g.,	if	model	is	used	to	adjust	insurance	premiums)	

Hospital	
re-admission	
predictor	

age,	gender,	
#	emergencies,	…	

Will	paSent	be	
re-admiUed?	

This is a confidential draft. Please do not redistribute. 6 EVALUATION
Report of associations of O=Abs. Error on Si=Age:
Global Population of size 28,930
p-value = 3.30e-179 ; CORR = [0.2057, 0.2432]

1. Subpopulation of size 6,252
Context = Urgent Care Treatments >= 1
p-value = 1.85e-141 ; CORR = [0.2724, 0.3492]

Fig. 7: Error Profile for Health Predictions. Shows the global
population and the subpopulation with highest effect size (correlation).
The plots visualize the correlation between age and prediction error,
for predictions of log(1 + number of visits). For each age-decade, we
display standard box plots (box from the 1st to 3rd quantile with a line
at the median and whiskers at 1.5 interquantile-ranges). The straight
green line depicts the best linear fit over the data.

tions, but also obtain hints for potential fixes. (1) We first
discover an association bug: the application has much
higher error rates for older than for younger people.
(2) We investigate why the bug arises: the bias can
be explained by lower prediction confidence for older
people. (3) From there, we suggest potential fixes, such
as only using high-confidence predictions. Our study
consists of two investigations (detection and debugging),
which we perform adaptively, each on its own test set.
Detection. We first use FairTest’s ErrorProfiling to ex-
amine associations between the algorithm’s prediction
error and a user’s age (scalar quantities, hence we use
correlation). The report (Fig.7) shows the error/age cor-
relations for the full user population and one subpopu-
lation with higher effect. We visualize correlation with
plots instead of contingency tables. Globally, predic-
tion error grows with age (correlation is positive and the
data shows a clear positive linear trend). This effect is
strongest for patients with prior urgent-care treatments.
In that context, the average error for patients of age 61-
99 is 1.07, compared to 0.33 for younger patients.

This finding is alarming, as such disparities could
cause quantifiable harms if, e.g., the algorithm is used
to adjust insurance premiums (one of the competition’s
motivations [25]). Hence we wish to further investigate
the causes of this accuracy loss for older patients, and get
insights into how to fix this fairness (and accuracy) bug.
Debugging. We use FairTest’s debugging abilities (ex-
planatory attributes) to verify a plausible cause for the
observed bias: The higher error for elderly patients could
be due to the high variance of the prediction target (the
number of hospital visits) for these users. To estimate the
variance in a patient’s target value, we train multiple pre-
dictors over random data subsets, and use these to infer

Report of associations of O=Abs. Error on Si=Age,
conditioned on explanatory attribute E=Confidence:
Global Population of size 28,930
p-value = 1.26e-13 ; COND-CORR = [0.1050, 0.1597]

* Low Confidence: Population of size 14,481
p-value = 2.27e-128 ; CORR = [0.1722, 0.2259]

* High Confidence: Population of size 14,449
p-value = 2.44e-13 ; CORR = [0.0377, 0.0934]

Fig. 8: Error Profile for Health Predictions using prediction
confidence as an explanatory attribute. Shows correlations between
prediction error and user age, broken down by prediction confidence.

prediction intervals for our algorithm’s outputs [54]. The
width of this interval is our estimate of the target’s vari-
ance. Low variance means high prediction confidence.

We run a new ErrorProfiling, with prediction confi-
dence as an explanatory attribute. Fig.8 shows the report.
Conditioning on prediction confidence weakens the cor-
relation in the full population. For users with low confi-
dence, the correlation of error on age is still positive and
significant, but for users with high confidence, the effect
is almost entirely gone. We omit results for users with an
urgent-care history, which are similar: the bias is almost
gone for patients with high-confidence predictions.
Remediation Strategies. These results imply an imme-
diate remediation strategy: when using this algorithm to,
say, tune insurance premiums, one should consider the
predictions’ confidence. For example, one might decide
to tune premiums only for high-confidence predictions.
This would result in about half of the users in our dataset
receiving customized premiums. One could also develop
a scheme that weighs any price increase by prediction
confidence. FairTest can then be used to test either of
these approaches for disparate impact on the population.
6.3.2 Image Tagger

Our second scenario showcases FairTest’s Discovery
capability from the perspective of the developer of an im-
age tagging system, who is willing to search for offensive
labeling among racial groups. To illustrate the process,
we inspect the labels produced by Caffe’s [28] imple-
mentation of R-CNN [18], a ready-to-use image tagger,
when applied to photos of people from ImageNet [9].
The tagger was itself trained on images from ImageNet
with 200 tags, including images of people. We tag 1,405
images of black people and 1,243 images of white peo-
ple with 5 labels each, and run a Discovery to find the 35
(top k) labels most strongly associated with each race.

12

12	



Debugging with FairTest


Are	there	confounding	factors?		
Do	associaSons	disappear	aqer	condiSoning?	
⇒	AdapSve	Data	Analysis!	

	

Example:	the	healthcare	applicaSon	(again)	
•  EsSmate	predicSon	confidence	(target	variance)	
•  Does	this	explain	the	predictor’s	behavior?	
•  Yes,	parSally	

	
	
	

FairTest	helps	developers	understand	&	evaluate	
potenSal	associaSon	bugs.	

This is a confidential draft. Please do not redistribute. 6 EVALUATION
Report of associations of O=Abs. Error on Si=Age:
Global Population of size 28,930
p-value = 3.30e-179 ; CORR = [0.2057, 0.2432]

1. Subpopulation of size 6,252
Context = Urgent Care Treatments >= 1
p-value = 1.85e-141 ; CORR = [0.2724, 0.3492]

Fig. 7: Error Profile for Health Predictions. Shows the global
population and the subpopulation with highest effect size (correlation).
The plots visualize the correlation between age and prediction error,
for predictions of log(1 + number of visits). For each age-decade, we
display standard box plots (box from the 1st to 3rd quantile with a line
at the median and whiskers at 1.5 interquantile-ranges). The straight
green line depicts the best linear fit over the data.

tions, but also obtain hints for potential fixes. (1) We first
discover an association bug: the application has much
higher error rates for older than for younger people.
(2) We investigate why the bug arises: the bias can
be explained by lower prediction confidence for older
people. (3) From there, we suggest potential fixes, such
as only using high-confidence predictions. Our study
consists of two investigations (detection and debugging),
which we perform adaptively, each on its own test set.
Detection. We first use FairTest’s ErrorProfiling to ex-
amine associations between the algorithm’s prediction
error and a user’s age (scalar quantities, hence we use
correlation). The report (Fig.7) shows the error/age cor-
relations for the full user population and one subpopu-
lation with higher effect. We visualize correlation with
plots instead of contingency tables. Globally, predic-
tion error grows with age (correlation is positive and the
data shows a clear positive linear trend). This effect is
strongest for patients with prior urgent-care treatments.
In that context, the average error for patients of age 61-
99 is 1.07, compared to 0.33 for younger patients.

This finding is alarming, as such disparities could
cause quantifiable harms if, e.g., the algorithm is used
to adjust insurance premiums (one of the competition’s
motivations [25]). Hence we wish to further investigate
the causes of this accuracy loss for older patients, and get
insights into how to fix this fairness (and accuracy) bug.
Debugging. We use FairTest’s debugging abilities (ex-
planatory attributes) to verify a plausible cause for the
observed bias: The higher error for elderly patients could
be due to the high variance of the prediction target (the
number of hospital visits) for these users. To estimate the
variance in a patient’s target value, we train multiple pre-
dictors over random data subsets, and use these to infer

Report of associations of O=Abs. Error on Si=Age,
conditioned on explanatory attribute E=Confidence:
Global Population of size 28,930
p-value = 1.26e-13 ; COND-CORR = [0.1050, 0.1597]

* Low Confidence: Population of size 14,481
p-value = 2.27e-128 ; CORR = [0.1722, 0.2259]

* High Confidence: Population of size 14,449
p-value = 2.44e-13 ; CORR = [0.0377, 0.0934]

Fig. 8: Error Profile for Health Predictions using prediction
confidence as an explanatory attribute. Shows correlations between
prediction error and user age, broken down by prediction confidence.

prediction intervals for our algorithm’s outputs [54]. The
width of this interval is our estimate of the target’s vari-
ance. Low variance means high prediction confidence.

We run a new ErrorProfiling, with prediction confi-
dence as an explanatory attribute. Fig.8 shows the report.
Conditioning on prediction confidence weakens the cor-
relation in the full population. For users with low confi-
dence, the correlation of error on age is still positive and
significant, but for users with high confidence, the effect
is almost entirely gone. We omit results for users with an
urgent-care history, which are similar: the bias is almost
gone for patients with high-confidence predictions.
Remediation Strategies. These results imply an imme-
diate remediation strategy: when using this algorithm to,
say, tune insurance premiums, one should consider the
predictions’ confidence. For example, one might decide
to tune premiums only for high-confidence predictions.
This would result in about half of the users in our dataset
receiving customized premiums. One could also develop
a scheme that weighs any price increase by prediction
confidence. FairTest can then be used to test either of
these approaches for disparate impact on the population.
6.3.2 Image Tagger

Our second scenario showcases FairTest’s Discovery
capability from the perspective of the developer of an im-
age tagging system, who is willing to search for offensive
labeling among racial groups. To illustrate the process,
we inspect the labels produced by Caffe’s [28] imple-
mentation of R-CNN [18], a ready-to-use image tagger,
when applied to photos of people from ImageNet [9].
The tagger was itself trained on images from ImageNet
with 200 tags, including images of people. We tag 1,405
images of black people and 1,243 images of white peo-
ple with 5 labels each, and run a Discovery to find the 35
(top k) labels most strongly associated with each race.
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High	confidence	in	predic#on	
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Other applica4ons studied using FairTest 


•  Image	tagger	based	on	ImageNet	data	
⇒	Large	output	space	(~1000	labels)	
⇒	FairTest	automaScally	switches	to	regression	metrics	
⇒	Tagger	has	higher	error	rate	for	pictures	of	black	people	
	
	
	

•  Simple	movie	recommender	system	
⇒	Men	are	assigned	movies	with	lower	ra#ngs	than	women	
⇒	Use	personal	preferences	as	explanatory	factor	
⇒	FairTest	finds	no	significant	bias	anymore	
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Closing remarks


The	Unwarranted	Associa/ons	Framework	
•  Captures	a	broader	set	of	algorithmic	biases	than	in	prior	work	
•  Principled	approach	for	staSsScally	valid	invesSgaSons	

FairTest	
•  The	first	end-to-end	system	for	evaluaSng	algorithmic	fairness	

Developers	need	beOer	sta6s6cal	training	and	tools	
to	make	beOer	sta6s6cal	decisions	and	applica6ons.	

	
hUp://arxiv.org/abs/1510.02377	
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Example: Berkeley graduate admissions


Admission	into	UC	Berkeley	graduate	programs	
(Bickel,	Hammel,	and	O’Connell,	1975)	
Bickel	et	al’s	(and	also	FairTest’s)	findings:	gender	bias	in	admissions	
at	university	level,	but	mostly	gone	aqer	condiSoning	on	department	

FairTest	helps	developers	understand	&	evaluate	
potenSal	associaSon	bugs.	

Graduate	
admissions	
commiUees	

age,	gender,	GPA,	…	 Admit	applicant?	
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