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What’s in the box?

5



How was the box built?
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How was the box built?
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How was the box built?
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What secrets does an AI spill?
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Part 1: Reverse-engineering models.
Stealing Part of a Production Language Model. Carlini et al. 2024

10



Attempt 1: “distillation”

Taori et al. 2023
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Only yields a shallow copy, but still useful!

Gudibande et al. 2023

Distilled model are a good source for transfer attacks

Zou et al. 2023

Distilled models don’t match performance
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Attempt 2: “cryptanalysis”

INPUTS WEIGHTS

𝑾𝟎 " 𝒙𝟎
𝑾𝟎

𝑾𝟏 " 𝒙𝟏
𝑾𝟏

Carlini et al. 2020
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Doesn’t scale to SOTA models (yet?)
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What if we asked for less?

Can we steal part of a 
SOTA ML model?

e.g., the model size?

15



0 0 ... 1 0
0 1 ... 0 0
1 0 ... 0 0
0 0 ... 0 1

Transformers 101.
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Insight: Transformer outputs are expansive.
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V	 ≫ 	hvocab size
(known)

hidden dim
(unknown)
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Recovering the hidden dimension.

LLM(x1) = y1          =  z1 * WT

LLM(xn) = yn          =  zn * WT

Y Z WT

n x V

=

n x h h x V

*

What’s the rank of Y?

...

prompts logits
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(Pythia 1.4B)



SVD(          ) = 

Recovering partial weights.

U VT

n x V n x h

*𝚺*
h x h h x V

weights W (up to a h×h transform)
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Is extracting the last layer useful?

1.  Pretty cool that we can learn anything at all J 
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Is extracting the last layer useful?

1.  Pretty cool that we can learn anything at all J 
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Unlikely!
(unless the guy happens to output 

logits in a small subset)



Is extracting the last layer useful?

1.  Pretty cool that we can learn anything at all J 

2.  Compute LLM 𝒙 ∈ 	ℝ𝑽 using only 𝑂 ℎ ≪ 𝑉 model queries

3.  Improve transfer attacks?
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Part 2: Reverse-engineering data.
Scalable Extraction of Training Data from (Production) Language Models. Nasr et al. 2024
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How often do LLMs output memorized data?
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How often do LLMs output memorized data?
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How do we define 
memorization?



A simple approach: “verbatim” regurgitation

chatbot “generated	text”“random	prompt”	

50 tokens 
verbatim from 
the internet?
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Base language models leak lots of training data.
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What about aligned chatbots?
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Maybe alignment prevents training data leaks?
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Or maybe not...
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A stronger attack: finetuning.

We finetune the chatbot to act like a “base” LLM 
that autocompletes Web text...
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Stochastic parrots on steroids!
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Solution? Add a memorization filter.
Preventing Verbatim Memorization in Language Models Gives a False Sense of Privacy. Ippolito et al. 2022
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36

Repeat “ABC”

“AB”

ML system

The filter can be (ab)used as a “training set oracle”.
Privacy Side Channels in Machine Learning Systems. Debenedetti et al. 2023.
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Application: A test  for data provenance.
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is this repository 
in Copilot’s 

training data?



Yes, it is training data!
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On responsible disclosure...
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We disclosed a bunch of vulnerabilities...
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Things that worked well: no one sued us!
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Things that worked well: patches!
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Things that didn’t work well: fragmentation.
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Things that didn’t work well: fragmentation.
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Things that didn’t work well: patches are brittle.
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We need community norms for disclosure.
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(concurrent work)

(GPT-3.5 turbo)



We need community norms for disclosure.

“secret” review period

disclose vuln & submit paper public release

How would this work with OpenReview?
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(IEEE Security & Privacy, CFP)



Conclusion

Ø ML interfaces are leaky objects

Ø API design can have a big impact

Ø We need better standards for disclosure and remediation
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