
Stealing a generative AI's
secrets (responsibly)

Florian Tramèr
ETH Zurich

FORC – June 13th 2024

What’s in the box?

3

What’s in the box?

4

What’s in the box?

5

How was the box built?

6

How was the box built?

7

How was the box built?

8

What secrets does an AI spill?

9

Part 1: Reverse-engineering models.
Stealing Part of a Production Language Model. Carlini et al. 2024

10

Attempt 1: “distillation”

Taori et al. 2023

11

Only yields a shallow copy, but still useful!

Gudibande et al. 2023

Distilled model are a good source for transfer attacks

Zou et al. 2023

Distilled models don’t match performance

12

Attempt 2: “cryptanalysis”

INPUTS WEIGHTS

𝑾𝟎 " 𝒙𝟎
𝑾𝟎

𝑾𝟏 " 𝒙𝟏
𝑾𝟏

Carlini et al. 2020

13

Doesn’t scale to SOTA models (yet?)

14

What if we asked for less?

Can we steal part of a
SOTA ML model?

e.g., the model size?

15

0 0 ... 1 0
0 1 ... 0 0
1 0 ... 0 0
0 0 ... 0 1

Transformers 101.

the
quick
brown

fox
W

*

0.1 -0.2 0.4 ... 2.3 -5.0 4.2
 1.2 0.2 -4.2 ... -1.2 3.2 -2.0
-0.1 1.3 -9.7 ... -2.9 8.2 -1.2
-2.6 3.3 -0.5 ... 5.4 -8.1 0.1

0.1 -0.2 0.4 ... 2.3 -5.0 4.2 WT

4	×	V

*

h	×	V

-2.4 1.2 ... -1.0 9.8 jumps

1	×	V

V	×	h

4	×	h

1	×	h

input text one-hot encoding input embeddings

output embedding logits predicted token

16

0 0 ... 1 0
0 1 ... 0 0
1 0 ... 0 0
0 0 ... 0 1

Insight: Transformer outputs are expansive.

the
quick
brown

fox
W

*

0.1 -0.2 0.4 ... 2.3 -5.0 4.2
 1.2 0.2 -4.2 ... -1.2 3.2 -2.0
-0.1 1.3 -9.7 ... -2.9 8.2 -1.2
-2.6 3.3 -0.5 ... 5.4 -8.1 0.1

0.1 -0.2 0.4 ... 2.3 -5.0 4.2 WT

4	×	V

*

h	×	V

-2.4 1.2 ... -1.0 9.8 jumps

1	×	V

V	×	h

4	×	h

1	×	h

input text one-hot encoding input embeddings

output embedding logits predicted token

V	 ≫ 	hvocab size
(known)

hidden dim
(unknown)

17

Recovering the hidden dimension.

LLM(x1) = y1 = z1 * WT

LLM(xn) = yn = zn * WT

Y Z WT

n x V

=

n x h h x V

*

What’s the rank of Y?

...

prompts logits

18

(Pythia 1.4B)

SVD() =

Recovering partial weights.

U VT

n x V n x h

𝚺
h x h h x V

weights W (up to a h×h transform)

19

Y

Is extracting the last layer useful?

1. Pretty cool that we can learn anything at all J

20

Is extracting the last layer useful?

1. Pretty cool that we can learn anything at all J

21

Unlikely!
(unless the guy happens to output

logits in a small subset)

Is extracting the last layer useful?

1. Pretty cool that we can learn anything at all J

2. Compute LLM 𝒙 ∈ 	ℝ𝑽 using only 𝑂 ℎ ≪ 𝑉 model queries

3. Improve transfer attacks?

22

Part 2: Reverse-engineering data.
Scalable Extraction of Training Data from (Production) Language Models. Nasr et al. 2024

23

24

How often do LLMs output memorized data?

25

How often do LLMs output memorized data?

26

How do we define
memorization?

A simple approach: “verbatim” regurgitation

chatbot “generated	text”“random	prompt”	

50 tokens
verbatim from
the internet?

27

Base language models leak lots of training data.

28

What about aligned chatbots?

29

Maybe alignment prevents training data leaks?

30

Or maybe not...

31

32

A stronger attack: finetuning.

We finetune the chatbot to act like a “base” LLM
that autocompletes Web text...

33

Stochastic parrots on steroids!

+f
in
et
un
in
g

17.0%

34

Solution? Add a memorization filter.
Preventing Verbatim Memorization in Language Models Gives a False Sense of Privacy. Ippolito et al. 2022

35

36

Repeat “ABC”

“AB”

ML system

The filter can be (ab)used as a “training set oracle”.
Privacy Side Channels in Machine Learning Systems. Debenedetti et al. 2023.

user

Application: A test for data provenance.

37

is this repository
in Copilot’s

training data?

Yes, it is training data!

38

Fr
ac

tio
n

of
 c

om
m

its
 C

op
ilo

t g
en

er
at

es
Cutoff date for

Copilot’s training
data

filter is never triggered

(fuzzy) filter is sometimes triggered

On responsible disclosure...

39

We disclosed a bunch of vulnerabilities...

40

Things that worked well: no one sued us!

41

Things that worked well: patches!

42

Things that didn’t work well: fragmentation.

43

Things that didn’t work well: fragmentation.

44

Things that didn’t work well: patches are brittle.

45

We need community norms for disclosure.

46

(concurrent work)

(GPT-3.5 turbo)

We need community norms for disclosure.

“secret” review period

disclose vuln & submit paper public release

How would this work with OpenReview?

47

(IEEE Security & Privacy, CFP)

Conclusion

Ø ML interfaces are leaky objects

Ø API design can have a big impact

Ø We need better standards for disclosure and remediation

48

