Is anything really OOD anymore?
And what does this mean for privacy?
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Models trained on one dataset can be brittle
on slightly modified data.
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But many of these OOD benchmarks seem to
be “solved” with more pre-training.

Robustness under distribution shift
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s this still “out of distribution”
generalization?
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Today: what does recent “O0D progress”
mean for private learning?
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Formally: training with differential privacy
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Differentially private learning is possible with
noisy gradient descent.

Gradient descent

add noise to each step to
guarantee privacy

Private gradient descent

[Chaudhuri et al., ‘11], [Bassily et al. “14],
[Shokri & Shmatikov ‘15], [Abadi et al. ‘16], ...



Training private ML models is challenging!
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Differentially Private Learning Needs Better Features (or Much More Data). Tramer & Boneh. 2021
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Solution? Leverage public data!

Deep Learning with Differential Privacy
October 25, 2016

Martin Abadi Andy Chu- lan Goodfellow?
H. Brendan McMahan* llya Mironov* Kunal Talwar*
Li Zhang*

We

treat the CIFAR-100 dataset as a public dataset and use it
to train a network with the same architecture.

Transfer + SGD (not private) 75% 00 0 -
CIFARI10 Transfer + DP-SGD (Abadi et al.) 67% 2 10~ | Public Data
Transfer + DP-SGD (ours) 72% | 2.1 | 10° | Public Data

Making the Shoe Fit: Architectures, Initializations, and Tuning for Learning with Privacy. Papernot et al. 2019
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Moar public datal <t
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Even moar public data!
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The nirvana: zero-shot privacy.

CAN FOUNDATION MODELS HELP US ACHIEVE
PERFECT SECRECY?
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The nirvana: zero-shot privacy.

FOCUS Framework:

logical privacy
Translate English to French: task description
Public
Foundation Model sea otter => loutre de mer examples
Unidirectional peppermint => menthe poivrée
Information Flow
plush girafe => girafe peluche
Users owning >
Private Data -U Cheese => prompt

Describe Tasks in . m
Natural Language [—j
Serve Multiple %, </( DP fore = 0 !l

Personal Tasks
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/ero-shot learning “solves” many
“privacy benchmarks”!

» CIFAR-10: 97% zero-shot acc with OpenCLIP (LAION pretraining)

» ImageNet: 88.8% zero-shot acc with JFT pretraining

Near-SOTA accuracy with *perfect™ privacy!







Two (possible) issues for private learning.

1. Is public pre-training cheating?

2. Does public pre-training work?
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Does public pretraining still preserve “privacy”?
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But is this “privacy preservi

ng”?
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Two (possible) issues for private learning.

2. Does public pre-training work?



A little secret...




No one cares about CIFAR-10 or ImageNet!



What makes a good benchmark?

> The benchmark is a proxy for a general task we care about
(e.g. image classification)

» Progress on the benchmark is (somewhat) predictive of performance
on the general task
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What tasks do we
with privacy?

really care about solving
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Are current benchmarks at least tracking
algorithmic progress on private learning?

» Tasks we care about solving privately are

(by definition) less likely to be represented on
the Internet

» Recent improvements on “private”
benchmarks seem mainly due to generic
improvements in zero-shot learning




Open problems



How good is public pretraining for sensitive
data that is not well represented on the Web?
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How good would public pretraining be it we
removed all sensitive data?
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Outlook

» Should Internet data be free game for “privacy-preserving” ML?
» How useful is public pretraining on highly sensitive data?
» Would public pretraining on non-sensitive data be as useful?

» We need better privacy benchmarks to answer these questions!
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