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What are Adversarial Examples?

“any input to a ML model that is intentionally designed by an
attacker to fool the model into producing an incorrect output”

“Small” perturbations “Large” perturbations Nonsensical inputs
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L,-bounded Adversarial Examples

Given input X, find X’ that is misclassified such that ||[x’ — x|| < ¢

(+) Easy to formalize

Adversarial
(=) Incomplete Examples
Lp
Concrete measure of progress: bounded
“my classifier has 97% accuracy for (excessive

perturbations of L, norm bounded by € =2 ” sensitivity)




Goodhart’s Law

“When a measure becomes
a target, it ceases to be a
good measure”




New Vulnerability: Invariance Adversarial Examples

Small semantics-altering perturbations that don’t change classification
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Our Results

State-of-the-art robust models are too robust g 5

Invariance to semantically meaningful
features can be exploited

Inherent tradeoffs

Solving excessive sensitivity & invariance
implies perfect classifier

Model with 88%
certified robust
accuracy

1 1

12% agreement
with human labels



A Fundamental Tradeoff

Hermit-crab Guacamole

OK! I'll make my classifier robust to L, perturbations of size 22
(we don’t yet know how to do this on ImageNet)



A Fundamental Tradeoff

Hermit-crab Hermit-crab

OK! I'll choose a better norm than L,
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Are Current Classifiers Already too Robust?



A Case-Study on MNIST

State-of-the-art certified robustness:
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Automatically Generating Invariance Attacks

Challenge: ensure label is changed from human perspective

Meta-procedure: alignment via data augmentation

2 . a few tricks
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input input from semantics- diff result
other class preserving
transformation




Do our invariance examples change human labels?

_________ Open problem:
379 better automated
’ attacks
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no attack £, <0.3 £, <04 L, < 0.4 (manual)




Which models agree most with humans?
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Why can models be accurate yet overly invariant?

Or, why can an MINIST model achieve 88% test-accuracy for £, < 0.4 ?

Problem: dataset is not diverse enough

Partial solution: data augmentation
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Conclusion

Robustness isn’t yet another metric to monotonically optimize!

Max “real” robust accuracy on MINIST: =80% at £, = 0.3
=10% at £, = 0.4

= We’ve already over-optimized!

Are we really making classifiers more robust,
or just overly smooth?



