
A Tour of Machine Learning Security

Florian Tramèr

Intel, Santa Clara, CA
August 30th 2018

First they came for images…

The Deep Learning Revolution

The Deep Learning Revolution
And then everything else…

The ML Revolution

4

Including things that likely won’t work…

Blockchain

What does this mean for privacy & security?

5

dog cat bird

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

Adapted from (Goodfellow 2018)

Training data

Outsourced learning

Test outputs

Test data
Outsourced inference

Robust statistics

Crypto, Trusted hardware

Crypto, Trusted hardware

Differential privacy

???Data poisoning

Privacy & integrity
Data inference

Model theft

Privacy & integrity

Adversarial
examples

6

dog cat bird

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

Training data

Outsourced learning

Test outputs

Test data
Outsourced inference

Robust statistics

Crypto, Trusted hardware

Crypto, Trusted hardware

Differential privacy

???Data poisoning

Privacy & integrity
Data inference

Model theft

Privacy & integrity

Adversarial
examples

This talk: security of deployed models

7

dog cat bird

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

Training data

Outsourced learning

Test outputs

Test data
Outsourced inference

Robust statistics

Crypto, Trusted hardware

Crypto, Trusted hardware

Differential privacy

???Data poisoning

Privacy & integrity
Data inference

Model theft

Privacy & integrity

Adversarial
examples

Stealing ML Models

Machine Learning as a Service

8

$$$ per query

Model f

input
Black Box

classification

Prediction API

Data

Training API

Goal 1: Rich Prediction APIs
• Highly Available
• High-Precision Results

Goal 2: Model Confidentiality
• Model/Data Monetization
• Sensitive Data

Model Extraction

9

Goal: Adversarial client learns close approximation of f
using as few queries as possible

Applications:

1) Undermine pay-for-prediction pricing model
2) ”White-box” attacks:

› Infer private training data
› Model evasion (adversarial examples)

Attack Model f Datax

f(x)
f’

Model Extraction

10

Goal: Adversarial client learns close approximation of f
using as few queries as possible

Attack Model f Datax

f(x)
f’

Isn’t this “just
Machine Learning”?

No! Prediction APIs
return fine-grained
information that makes
extracting much easier
than learning

Learning vs Extraction
Learning f(x) Extracting f(x)

Function to learn Noisy real-world
phenomenon

“Simple” deterministic function f(x)

11

Learning vs Extraction
Learning f(x) Extracting f(x)

Function to learn Noisy real-world
phenomenon

“Simple” deterministic function f(x)

Available labels hard labels
(e.g., “cat”, “dog”, …)

Depending on API:
- Hard labels
- Soft labels (class probas)
- Gradients (Milli et al. 2018)

12

Learning vs Extraction
Learning f(x) Extracting f(x)

Function to learn Noisy real-world
phenomenon

“Simple” deterministic function f(x)

Available labels hard labels
(e.g., “cat”, “dog”, …)

Depending on API:
- Hard labels
- Soft labels (class probas)
- Gradients (Milli et al. 2018)

Labeling function Humans, real-world
data collection

Query f(x) on any input x
=> No need for labeled data
=> Queries can be adaptive

13

Learning vs Extraction for specific models
Learning f(x) Extracting f(x)

Logistic
Regression

|Data| ≈ 10 * |Features| - Hard labels only: (Loyd & Meek)
- With confidences: simple system

of equations (T et al.)

|Data| = |Features| + cte

14

Learning vs Extraction for specific models
Learning f(x) Extracting f(x)

Logistic
Regression

|Data| ≈ 10 * |Features| - Hard labels only: (Loyd & Meek)
- With confidences: simple system

of equations (T et al.)

|Data| = |Features| + cte

Decision
Trees

- NP-hard in general
- polytime for Boolean trees

(Kushilevitz & Mansour)

“Differential testing” algorithm to
recover the full tree (T et al.)

15

Learning vs Extraction for specific models
Learning f(x) Extracting f(x)

Logistic
Regression

|Data| ≈ 10 * |Features| - Hard labels only: (Loyd & Meek)
- With confidences: simple system

of equations (T et al.)

|Data| = |Features| + cte

Decision
Trees

- NP-hard in general
- polytime for Boolean trees

(Kushilevitz & Mansour)

“Differential testing” algorithm to
recover the full tree (T et al.)

Neural
Networks

Large models required
“The more data the better”

- Distillation (Hinton et al.)
Make smaller copy of model from
confidence scores

- Extraction from hard labels
(Papernot et al., T et al.)

16

No quantitative analysis for
large neural nets yet

Takeaways
• A “learnable” function cannot be private

• Prediction APIs expose fine-grained
information that facilitate model stealing

• Unclear how effective model stealing is for
large-scale models

17

18

dog cat bird

(Goodfellow 2016)

Adversarial Training
Labeled as bird

Decrease
probability
of bird class

Still has same label (bird)

Training data

Outsourced learning

Test outputs

Test data
Outsourced inference

Robust statistics

Crypto, Trusted hardware

Crypto, Trusted hardware

Differential privacy

???Data poisoning

Privacy & integrity
Data inference

Model theft

Privacy & integrity

Adversarial
examples

Evading ML Models

19

Published as a conference paper at ICLR 2015

+ .007⇥ =

x sign(r
x

J(✓,x, y))
x+

✏sign(r
x

J(✓,x, y))
“panda” “nematode” “gibbon”

57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our ✏ of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Let ✓ be the parameters of a model, x the input to the model, y the targets associated with x (for
machine learning tasks that have targets) and J(✓,x, y) be the cost used to train the neural network.
We can linearize the cost function around the current value of ✓, obtaining an optimal max-norm
constrained pertubation of

⌘ = ✏sign (r
x

J(✓,x, y)) .

We refer to this as the “fast gradient sign method” of generating adversarial examples. Note that the
required gradient can be computed efficiently using backpropagation.

We find that this method reliably causes a wide variety of models to misclassify their input. See
Fig. 1 for a demonstration on ImageNet. We find that using ✏ = .25, we cause a shallow softmax
classifier to have an error rate of 99.9% with an average confidence of 79.3% on the MNIST (?) test
set1. In the same setting, a maxout network misclassifies 89.4% of our adversarial examples with
an average confidence of 97.6%. Similarly, using ✏ = .1, we obtain an error rate of 87.15% and
an average probability of 96.6% assigned to the incorrect labels when using a convolutional maxout
network on a preprocessed version of the CIFAR-10 (Krizhevsky & Hinton, 2009) test set2. Other
simple methods of generating adversarial examples are possible. For example, we also found that
rotating x by a small angle in the direction of the gradient reliably produces adversarial examples.

The fact that these simple, cheap algorithms are able to generate misclassified examples serves as
evidence in favor of our interpretation of adversarial examples as a result of linearity. The algorithms
are also useful as a way of speeding up adversarial training or even just analysis of trained networks.

5 ADVERSARIAL TRAINING OF LINEAR MODELS VERSUS WEIGHT DECAY

Perhaps the simplest possible model we can consider is logistic regression. In this case, the fast
gradient sign method is exact. We can use this case to gain some intuition for how adversarial
examples are generated in a simple setting. See Fig. 2 for instructive images.

If we train a single model to recognize labels y 2 {�1, 1} with P (y = 1) = �
�
w

>
x+ b

�
where

�(z) is the logistic sigmoid function, then training consists of gradient descent on

E
x,y⇠pdata⇣(�y(w>

x+ b))

where ⇣(z) = log (1 + exp(z)) is the softplus function. We can derive a simple analytical form for
training on the worst-case adversarial perturbation of x rather than x itself, based on gradient sign

1This is using MNIST pixel values in the interval [0, 1]. MNIST data does contain values other than 0 or
1, but the images are essentially binary. Each pixel roughly encodes “ink” or “no ink”. This justifies expecting
the classifier to be able to handle perturbations within a range of width 0.5, and indeed human observers can
read such images without difficulty.

2 See https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/

papers/maxout. for the preprocessing code, which yields a standard deviation of roughly 0.5.

3

(Szegedy et al. 2013, Goodfellow et al. 2015)

Pretty sure this
is a panda

I’m certain this
is a gibbon

ML models make surprising mistakes

Where are the defenses?

• Adversarial training
Szegedy et al. 2013, Goodfellow et al. 2015,

Kurakin et al. 2016, T et al. 2017,

Madry et al. 2017, Kannan et al. 2018

• Convex relaxations with provable guarantees
Raghunathan et al. 2018, Kolter & Wong 2018, Sinha et al. 2018

• A lot of broken defenses…

20

Prevent “all/most

attacks” for a
given norm ball

Current approach:
1. Fix a ”toy” attack model (e.g., some l∞ ball)

2. Directly optimize over the robustness measure
Þ Defenses do not generalize to other attack models

Þ Defenses are meaningless for applied security

What do we want?
• Model is “always correct” (sure, why not?)

• Model has blind spots that are “hard to find”
• “Non-information-theoretic” notions of robustness?

• CAPTCHA threat model is interesting to think about

21

Do we have a realistic threat model? (no…)

ADVERSARIAL EXAMPLES
ARE HERE TO STAY!

For many things that humans can do
“robustly”, ML will fail miserably!

22

23

Ad blocking is a “cat & mouse” game
1. Ad blockers build crowd-sourced filter lists
2. Ad providers switch origins / DOM structure
3. Rinse & repeat

(4?) Content provider (e.g., Cloudflare) hosts the ads

A case study on ad blocking

24

New method: perceptual ad-blocking (Storey et al. 2017)

• Industry/legal trend: ads have to be clearly indicated
to humans

A case study on ad blocking

”[…] we deliberately ignore all signals
invisible to humans, including URLs
and markup. Instead we consider visual
and behavioral information. […] We
expect perceptual ad blocking to be
less prone to an "arms race."

(Storey et al. 2017)

If humans can detect ads, so can ML!

How to detect ads?

25

1. “DOM based”
• Look for specific ad-cues in the DOM
• E.g., fuzzy hashing, OCR (Storey et al. 2017)

2. Machine Learning on full page content
• Sentinel approach: train object detector (YOLO) on

annotated screenshots

Browser

26

Webpage

Ad
blocker

Content
provider

Ad
network

Vivamus vehicula leo a
justo. Quisque nec
augue. Morbi mauris wisi,
aliquet vitae, dignissim
eget, sollicitudin molestie,

Vivamus vehicula leo a
justo. Quisque nec augue.
Morbi mauris wisi, aliquet
vitae, dignissim eget,
sollicitudin molestie,

What’s the threat model for perceptual ad-blockers?

Browser

27

Webpage

Ad
blocker

Content
provider

Ad
network

Vivamus vehicula leo a
justo. Quisque nec augue.
Morbi mauris wisi, aliquet
vitae, dignissim eget,
sollicitudin molestie,

Vivamus vehicula leo a
justo. Quisque nec
augue. Morbi mauris wisi,
aliquet vitae, dignissim
eget, sollicitudin molestie,

What’s the threat model for perceptual ad-blockers?

1. False Negatives

Browser

28

Webpage

Ad
blocker

Content
provider

Ad
network

Vivamus vehicula leo a
justo. Quisque nec augue.
Morbi mauris wisi, aliquet
vitae, dignissim eget,
sollicitudin molestie,

Vivamus vehicula leo a
justo. Quisque nec
augue. Morbi mauris wisi,
aliquet vitae, dignissim
eget, sollicitudin molestie,

What’s the threat model for perceptual ad-blockers?

2. False Positives (“DOS”, or ad-blocker detection)

Webpage

29

Ad
blocker

Vivamus vehicula leo a
justo. Quisque nec augue.
Morbi mauris wisi, aliquet
vitae, dignissim eget,
sollicitudin molestie,

What’s the threat model for perceptual ad-blockers?

3. Resource exhaustion (for DOM-based techniques)

Content
provider

Ad
network

Pretty much the worst possible!

1. Ad blocker is white-box (browser extension)
Þ Alternative would be a privacy & bandwidth nightmare

2. Ad blocker operates on (large) digital images
Þ Or can exhaust resources by injecting many small elements

3. Ad blocker needs to resist adversarial false
positives and false negatives

Þ Perturb ads to evade ad blocker
Þ Discover ad-blocker by embedding false-negatives
Þ Punish ad-block users by perturbing benign content

4. Updating is more expensive than attacking
30

What’s the threat model for perceptual ad-blockers?

An interesting contrast: CAPTCHAs

Deep ML models can solve text CAPTCHAs!
ÞWhy don’t CAPTCHAs use adversarial examples?
ÞCAPTCHA ≃ adversarial example for OCR systems

31

Model access
Vulnerable to false
positives, resource

exhaustion

Model
Updates

Ad blocker White-box Yes Expensive

CAPTCHA
“Black-box”

(not even query access)
No Cheap

(None)

Original False positive False negative
OCR
Fuzzy hashing

Attacks on perceptual ad-blockers
DOM-based

• Facebook already obfuscates text indicators!

Þ Cat & mouse game on text obfuscation
Þ Final step: use a picture of text

• Dealing with images is hard(er)
• Adversarial examples
• DOS (e.g., OCR on 100s of images)

32

Attacks on perceptual ad-blockers
ML based

• YOLO to detect AdChoice logo

• YOLO to detect ads “end-to-end” (it works!)

33

Conclusions
• ML revolution ⇒ rich pipeline with interesting

security & privacy problems at every step

• Model stealing
• One party does the hard work (data labeling, learning)
• Copying the model is easy with rich prediction APIs
• Model monetization is tricky

• Model evasion
• Everything’s broken once you add an adversary

(and an interesting attack model)
• Perceptual ad blocking

• Mimicking human perceptibility is very challenging
• Ad blocking has the “worst” possible threat model

34TH
AN
KS

