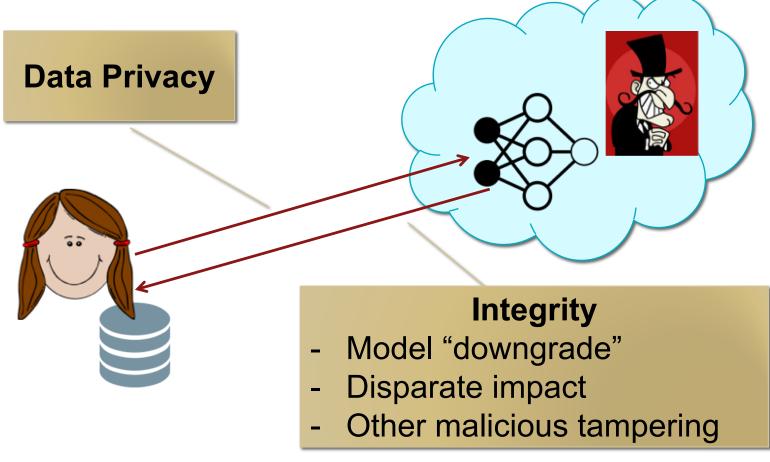
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware

Florian Tramèr (joint work with Dan Boneh)

Intel, Santa Clara – August 30th 2018

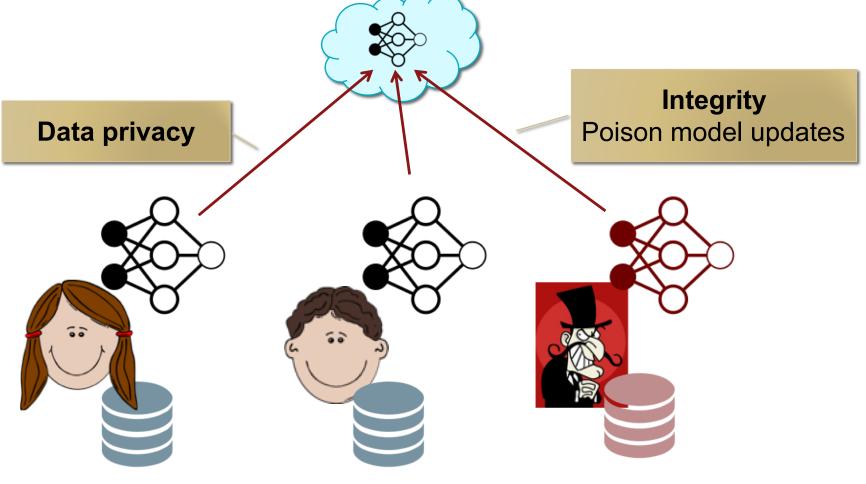
Trusted execution of ML: 3 motivating scenarios

1. Outsourced ML



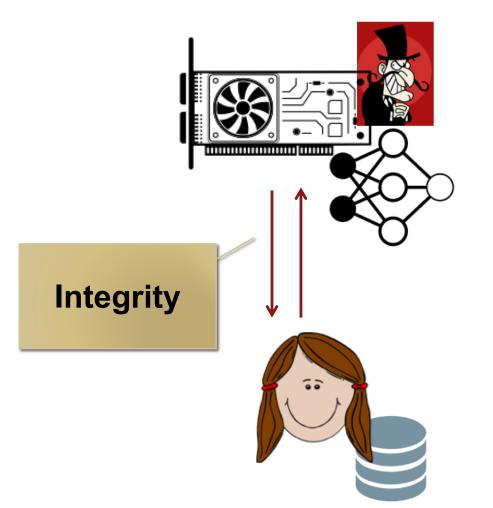
Trusted execution of ML: 3 motivating scenarios

2. Federated Learning



Trusted execution of ML: 3 motivating scenarios

 Trojaned hardware (Verifiable ASICs model, Wahby et al.)



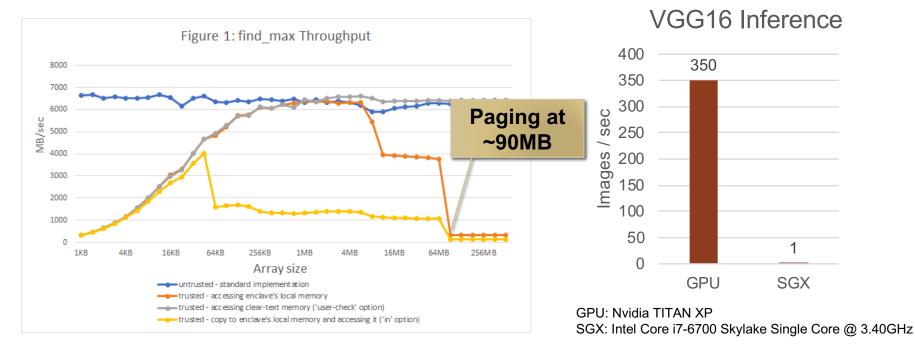
Solutions

- Cryptography
 - 1. Outsourced ML: FHE, MPC, (ZK) proof systems
 - 2. Federated learning: no countermeasure for poisoning...
 - 3. Trojaned hardware: some root of trust is needed

- Trusted Execution Environments (TEEs)
 - 1. Outsourced ML: isolated enclaves
 - 2. Federated learning: trusted sensors + isolated enclaves
 - **3. Trojaned hardware:** fully trusted (but possibly slow) hardware

Trusted Execution: At what cost?

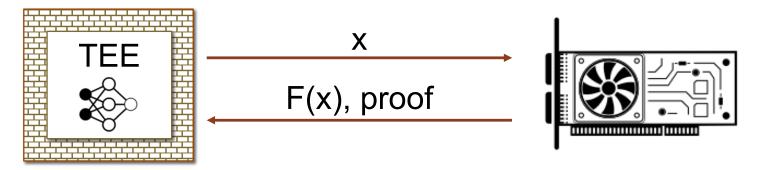
- Trusted ASICs (Wahby et al.): $\sim 10^8 \times$ worse than SOTA
- Intel SGX:



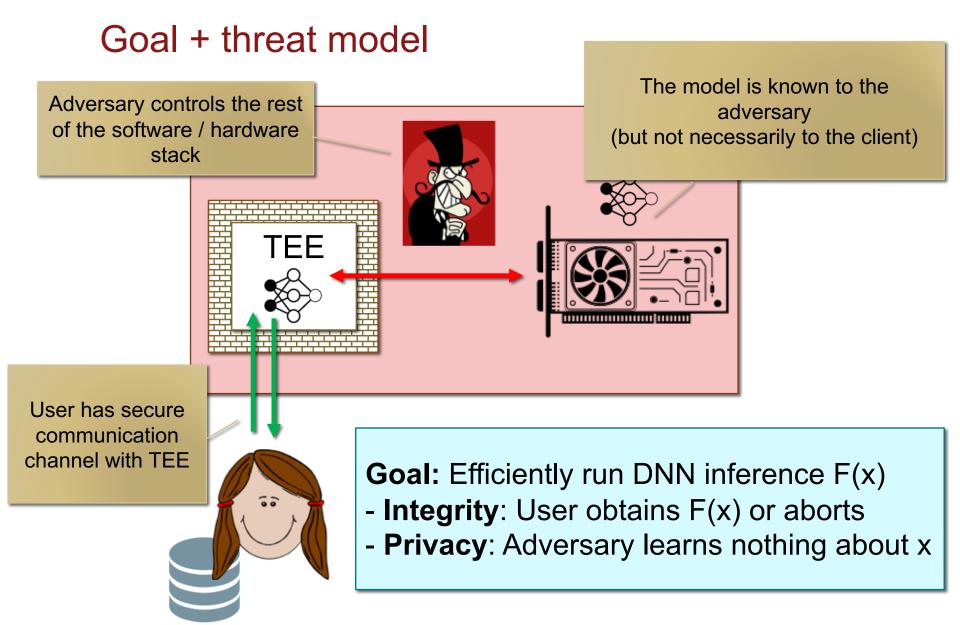
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a

"How do we efficiently leverage TEEs for secure machine learning computations?"

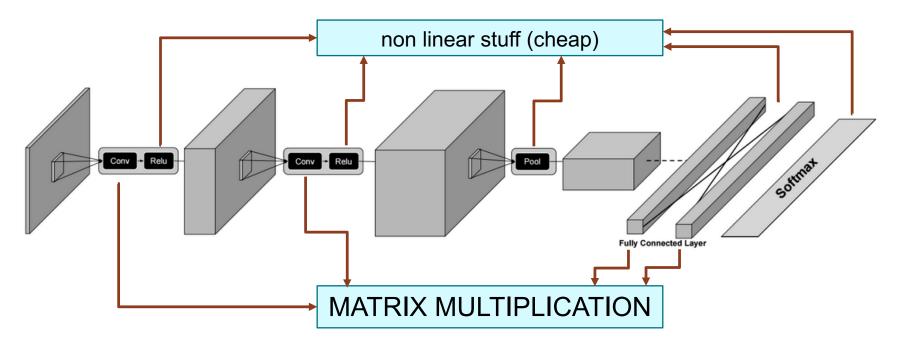
<u>Idea</u>: outsource work to *collocated*, *faster* but *untrusted* device and verify results



	Computations	Required gap	Privacy
Verifiable ASICs (Wahby et al., 2016)	Arithmetic circuits	~ 8 orders of magnitude	No
Slalom	DNN inference	~ 1-2 orders	"Yes"



Bottlenecks in deep neural networks



Name ⊽	Wall Duration ▼	
NoOp	0.006 ms	
Const	0.016 ms	
Arg	0.004 ms	
VariableV2	0.077 ms	~ 97%
Identity	0.034 ms	
Conv2D	372.828 ms	
BiasAdd	5.637 ms	
Relu	2.924 ms	
MaxPool	2.495 ms	
Totals	384.021 ms	

VGG16 Inference on 1 CPU core

Outsourcing matrix multiplication: Freivald's algorithm

Input: $X \in \mathbb{F}^{n \times n}$, $W \in \mathbb{F}^{n \times n}$

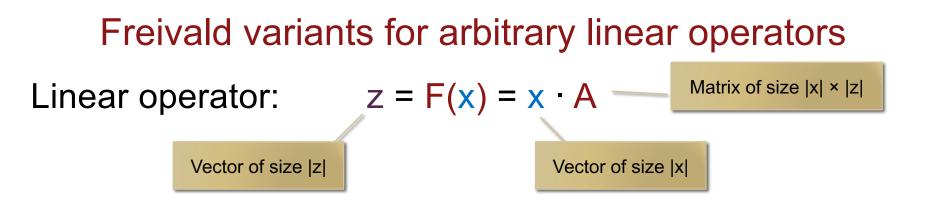
DNN weights. Fixed at inference time

Direct Compute: $Z = X \cdot W$

 \approx n³ multiplications or O(n^{2.81}) with Strassen

Outsource + Verify:

- Sample $\mathbf{r} \leftarrow \mathbb{F}^n$ uniformly at random
- Check: $Z \cdot r = X \cdot (W \cdot r)$
- Complexity: ≈ 3n² multiplications
- Soundness: 1 / | F | (boost by repeating)



Batched verification:

Compute:
$$[z_1 \dots z_B] = F([x_1 \dots x_B]) \Rightarrow B \cdot cost(F)$$
 mults
Freivald: $r^T \cdot [z_1 \dots z_B] = P(r^T \cdot [x_1 \dots x_B]) \Rightarrow B \cdot (|x|+|z|) + cost(F)$ mults

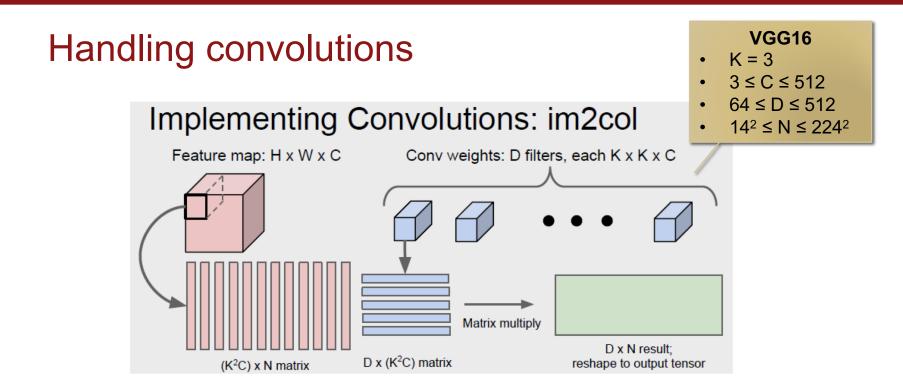
With precomputation:

Precompute: $A' = A \cdot r = (\nabla_x F)(r)$

Freivald: $\langle z, r \rangle = \langle x, A' \rangle$

2 inner products!

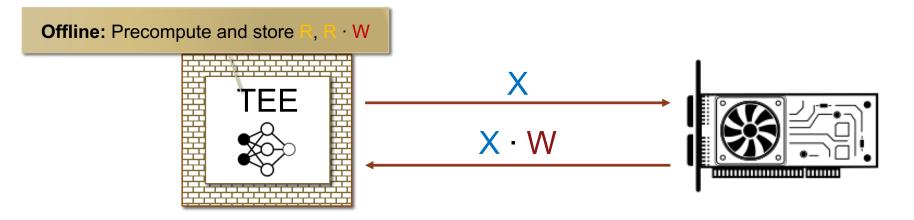
 \Rightarrow |x| + |z| mults



	Operation	Multiplications
Compute	$[z_1 \dots z_B] = im2col([x_1 \dots x_B]) * W$	B·H·W·K ² ·C·D
Batched verify	$r_1^T * [z_1 \dots z_B] * r_2 =?$ im2col($r_1 * ([x_1 \dots x_B]) * (W * r_2)$	B·H·W·D + B·H·W·C + K ² ·C·D + H·W·K ² ·C
Preprocessing	$\langle z, r \rangle = \langle (\nabla_x F)(r), x \rangle$	B·H·W·D + B·H·W·C

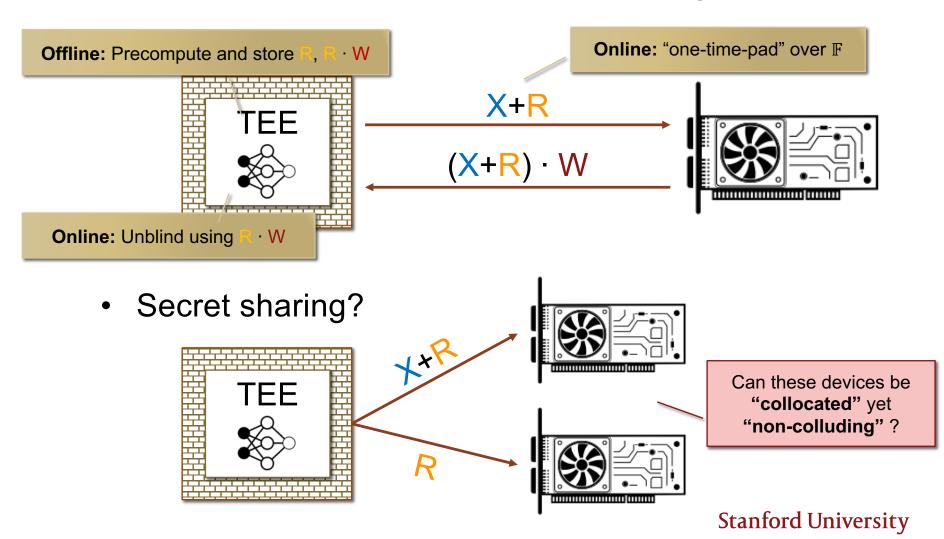
Preserving privacy

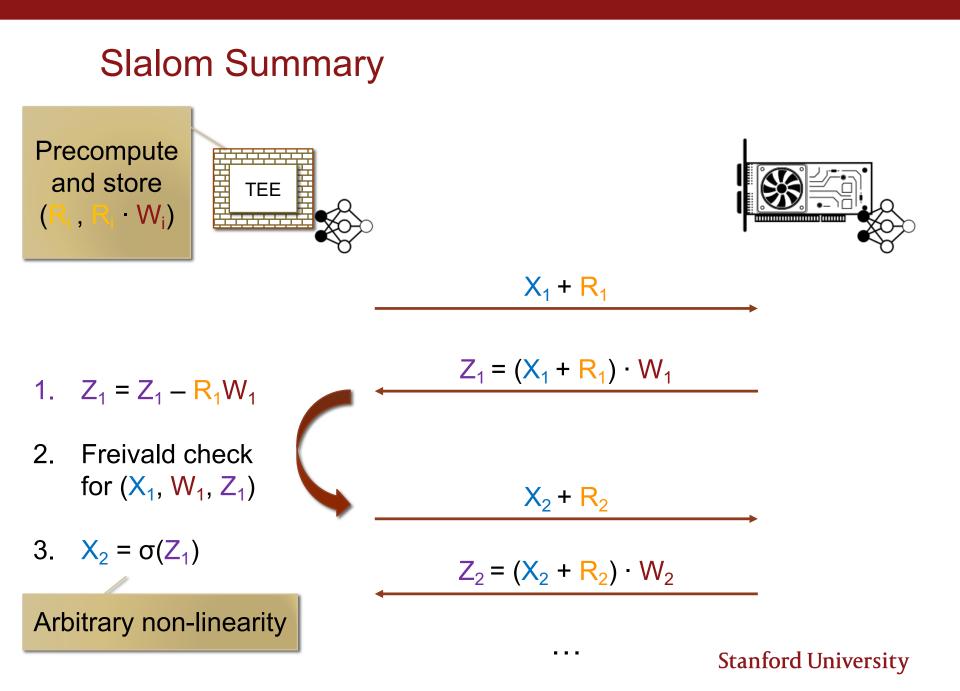
• Offline precomputation + online blinding



Preserving privacy

• Offline precomputation + online blinding





Slalom (some details)

Quantization:

- DNNs are typically trained / evaluated in floating point
- Freivald / blinding require working over a ring/field ${\mathbb F}$
- **Quantize inputs & weights** and work mod $p (p < 2^{24})$

Integrity checks:

- Eval DNN on fast device and store inputs/outputs of all linear ops
 ⇒ close to no prover overhead
- Sample r from F and do Freivald check in double precision
 ⇒ verifier complexity is at least |x| + |z| double muls per linear layer

Blinding:

- Store unblinding factors R·W encrypted in untrusted memory
- In online phase, decrypt (and authenticate) R·W to unblind

Design & Evaluation

Implementation

- TEE: Intel SGX "Desktop" CPU (single thread)
- Untrusted device: Nvidia Tesla GPU
- Port of the Eigen linear algebra C++ library to SGX (used in e.g., TensorFlow)

Workloads:

- Microbenchmarks (see paper)
- VGG16 ("beefy" canonical feedforward neural network)
- MobileNet (resource efficient DNN tailored for low-compute devices)
 - Variant 1: standard MobileNet (see paper)
 - Variant 2: No intermediate ReLU in separable convolutions (this talk)

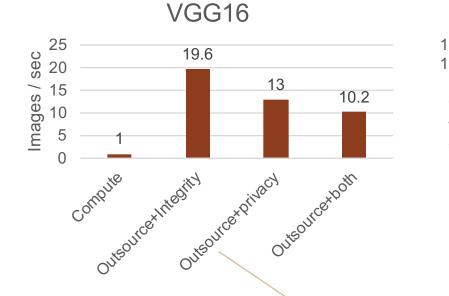
Verifiable inference

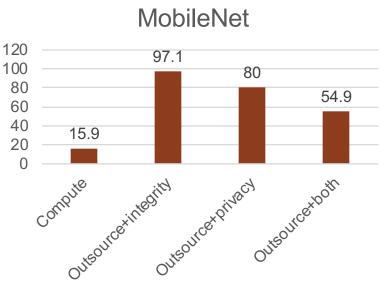
VGG16 MobileNet 25 120 97.1 19.6 100 20 Images / sec 80 15 60 10 40 30 15.9 5 20 1.7 0 0 Verify with Verify with Compute Verify Compute Verify preproc preproc VGG16 weights take 500MB Difficult to get faster so SGX has to page weights Preprocessed weights W·r batched verification due to take up less memory and in and out of memory SGX memory limits enable faster checks! => ~2-3x slowdown

Stanford University

MobileNet's weights are only ~10MB so they fit in the SGX cache

Verifiable and private inference





Extra Costs

- GPU has to operate in double precision
- Decrypt all unblinding factors R·W (AES-GCM)
- Regenerate all blinding factors R (PRG using AES)

Summary

- Large savings (6x 20x) in outsourcing DNN inference while preserving integrity
 - Sufficient for some use-cases!
- More modest savings (3.5x 10x) with **input privacy**
 - Requires preprocessing

Open questions

- What other problems are (concretely) easier to verify than to compute?
 - All NP complete problems (are those often outsourced?)
 - What about something in P?
 - Convex optimization
 - Other uses of matrix multiplication
 - Many graph problems (e.g., perfect matching)
- What about Slalom for verifiable / private training?
 - Quantization at training time is hard
 - Weights change so we can't preprocess weights for Freivald's check
 - We assume the model is known to the adversary (e.g., the cloud provider)