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minimize loss

Neural networks learn from a (private) training set.

“cat”



The trained model might leak the training set.
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from the Bible (1 Kings 7:2)



This talk: Membership inference attacks

4

Was 
in the 
training set?



Why should we care about membership inference?

1. A real attack (e.g., models trained on medical data)

2. An attack component (e.g., for data extraction)

3. A simple, formal upper-bound on data leakage
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Data privacy
Membership inference attack

Secure encryption
Chosen plaintext attack≈



Outline.

Ø Most membership attacks (and their evaluations) are flawed

Ø A new principled attack that works on outliers

Ø A new stronger attack that works for any input

Ø Defenses and how to audit them
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A simple MI attack: loss thresholding
[Yeom et al.’18]
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minimize loss



A simple MI attack: loss thresholding
[Yeom et al.’18]
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A simple MI attack: loss thresholding
[Yeom et al.’18]
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decision threshold
guess “member”
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[Yeom et al.’18]
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decision threshold
guess “member”
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Loss thresholding leaks membership on average.
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AUC-ROC=0.59



0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv

e
R
at

e

Baseline
acc=0.608

Loss thresholding leaks membership on average.

13

Average-case leakage 
is a poor metric for privacy!
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Loss thresholding doesn’t confidently infer 
membership of any member of the training set!
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Our preferred evaluation methodology: low FPRs
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Some attacks work! (but average-case metrics don’t show it)
[Sablayrolles et al.’19]
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Some attacks work! (but average-case metrics don’t show it)
[Sablayrolles et al.’19]

17

10°5 10°4 10°3 10°2 10°1 100

False Positive Rate

10°5

10°4

10°3

10°2

10°1

100

T
ru

e
P
os

it
iv

e
R
at

e

Sablayrolles et al.
acc=0.562

Baseline
acc=0.608

100x better in 
the worst-case

slightly worse
on average



Insight: not all examples are equally “hard”
[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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Confidence: 
90% cat

Confidence: 
85% truck

Which is a 
member?



Insight: not all examples are equally “hard”
[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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Insight: not all examples are equally “hard”
[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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LIRA: Likelihood Ratio Attack
Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P ‘22
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1. Query model loss 𝑙 = 𝑓(𝑥)

2. Train 𝑁 “shadow models” 𝑔!"#$ = Train(𝒟), 𝑔%&$ = Train(𝒟 ∪ 𝑥)
3. Compute confidences 𝑍out = { 𝑔!"#$ x }$ , 𝑍in = { 𝑔%&$ x }$
4. Model 𝑍out and 𝑍in as Gaussians

5. Output likelihood ratio: Λ = ,- . / 01 234354-]
,- . / 01 789 234354-]

guess “member” 
if Λ > 𝜏
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LIRA: Likelihood Ratio Attack
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1. Query model loss 𝑙 = 𝑓(𝑥)

2. Train 𝑁 “shadow models” 𝑔!"#$ ← Train(𝒟), 𝑔%&$ ← Train(𝒟 ∪ 𝑥)
3. Compute confidences 𝑍out = { 𝑔!"#$ x }$ , 𝑍in = { 𝑔%&$ x }$
4. Model 𝑍out and 𝑍in as Gaussians

5. Output likelihood ratio: Λ = ,- . / 01 234354-]
,- . / 01 789 234354-]

sampled from the 
same distribution as 
the training set of 𝑓
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24
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LIRA: Likelihood Ratio Attack
Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P ‘22
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1. Query model loss 𝑙 = 𝑓(𝑥)

2. Train 𝑁 “shadow models” 𝑔!"#$ ← Train(𝒟), 𝑔%&$ ← Train(𝒟 ∪ 𝑥)
3. Compute losses 𝐿out = { 𝑔!"#$ x }$ , 𝐿in = { 𝑔%&$ x }$
4. Fit Gaussians to 𝑳𝐨𝐮𝐭 and 𝑳𝐢𝐧

5. Output likelihood ratio: Λ = !" # 𝒩(&!" , (!")]
!" # 𝒩(&#$% , (#$%)]
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Results (CIFAR-10)
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slightly better 
on average

>10x better in the 
worst case

(thanks to Gaussian fitting 
+ numeric stability + 
multiple queries + ...)



Membership inference only works on outliers.
(“worst-case” examples)
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Next: a new attack that also works on inliers!
(“average-case” examples)
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A new threat model: privacy poisoning
T et al. “Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets”
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.
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poison

loss loss

“cat” “cat”
“dog”



Poisoned models leak more than membership. 
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with targeted poisoning of <0.1% of the training set
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(a)	Membership	Inference (b)	Attribute	Inference (c)	Data	Extraction



How to defend against membership leakage?
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defense

loss loss



DP guarantee holds for any
pair of datasets that differ in 
any single element 
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Differential privacy prevents all our attacks.

Pr[𝐴train = ]
Pr[𝐴train = ]

≤ 𝑒!



𝑇𝑃𝑅
𝐹𝑃𝑅

≤ 𝑒&

DP bounds the success of any MI attack.
[Kairouz et al. ‘15]
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𝑒& ≥
𝑇𝑃𝑅
𝐹𝑃𝑅

Corollary: MI attacks can be used to audit privacy.
[Jagielsky et al. ‘20, Nasr et al. ’21]
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Example: DP with 98% accuracy on MNIST
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Proof-of-concept
[Shokri & Shmatikov]

Tighter analysis
[Abadi et al.]

Better architectures
[Papernot et al.]

Better features
[T & Boneh]



Example: DP with 98% accuracy on MNIST

New algorithm
𝜺 ≈ 0.08 (!!!)
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Example: DP with 98% accuracy on MNIST

Is this claim 
correct?
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How to verify a privacy claim?

Ø Check the proof
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How to verify a privacy claim?

Ø Check the proof

Ø Check the code
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How to verify a privacy claim?

Ø Check the proof

Ø Check the code

Ø Launch a MI attack!
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DP bounds should hold for any data point.
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D0 =

D1 =

...

...

worst-case 
out-of-distribution 

data point

Attack goal: guess if DP model was trained on D0 or D1



���������
Train on D0
Train on D1

Model	loss	on

𝜺 > 𝟐. 𝟕
(claim was 𝜀 = 0.08)

Run the attack 100’000 times...
T et al. “Debugging Differential Privacy: A Case Study for Privacy Auditing”
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Conclusion

Ø Average-case leakage is a poor metric for privacy!

Ø We must reevaluate what we “know” about MI attacks & defenses

Ø Poisoning can turn average-case inputs into worst-case inputs

Ø Worst-case MI attacks are a useful tool for catching DP bugs

https://floriantramer.com florian.tramer@inf.ethz.ch

https://floriantramer.com/
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