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Neural networks learn from a (private) training set.




The trained model might /eak the training set.
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This talk: Membership inference attacks

training set?




Why should we care about membership inference?

1. Areal attack (e.g., models trained on medical data)
2. An attack component (e.g., for data extraction)

3. Asimple, formal upper-bound on data leakage

Data privacy Secure encryption
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Membership inference attack Chosen plaintext attack



Outline.

» Most membership attacks (and their evaluations) are flawed
» A new principled attack that works on outliers
» A new stronger attack that works for any input

» Defenses and how to audit them



A simple MI attack: loss thresholding

[Yeom et al/18]
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Loss thresholding leaks membership on average.
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Loss thresholding leaks membership on average.
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| 0ss thresholding doesn’t confidently infer
membership of any member of the training set!
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Our preferred evaluation methodology: low FPRs
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Some attacks work! (but average-case metrics don’t show it)

[Sablayrolles et al.’19]
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Some attacks work! (but average-case metrics don’t show it)

[Sablayrolles et al.’19]

—_
(e
e}

4
d
10—1 .
2
100x betterin &
o 1077 3
the worst-case >
o 10777 slightly worse
= Sablayrolles et al. on average
10—4 - acc=0.562
Baseline
acc=0.608
10_5 T LR | LR | LR | T
107° 10~ 1073 102 10~1 10"

False Positive Rate



Insight: not all examples are equally “hard”

[Sablayrolles et al’19, Long et al.20, Feldman & Zhang’20, Watson et al’21, Ye et al.’21]
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LIRA: Likelihood Ratio Attack

Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P 22

1. Query modelloss = f(x)
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Pr|l| x is not a member]
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LIRA: Likelihood Ratio Attack

Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P 22
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LIRA: Likelihood Ratio Attack

Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P 22

1. Query modelloss = f(x)

2. Train N “s
3. Compute

5. Output likelihood ratio: [\ =
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LIRA: Likelihood Ratio Attack

Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P 22
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Results (CIFAR-10)
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Membership inference only works on outliers.
(“worst-case” examples)
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Next: a new attack that also works on inliers!
(“average-case” examples)

Membership Inference on CIFAR-10
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A new threat model: privacy poisoning

T et al. “Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets”

Leak private data
from other users
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Poisoning can transform inliers into outliers.
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Poisoning can transform inliers into outliers.

Ilcatll

poison

Ilcatll

35



Poisoned models [eak more than membership.

Ours = Prior work

J1.01 ] ]

o g

9 &

= 39X

5 X

S 0.5- | 33> 5 - ok

Dcf O

o A = 14 X

S 130 X N

- OO | T T T : T T I T T
107310721071 10° 107310721071 100 109 102 10% 10°
False Positive Rate False Positive Rate Guesses

(a) Membership Inference (b) Attribute Inference (c) Data Extraction

with targeted poisoning of <0.1% of the training set

36



How to defend against membership leakage?

defens> ‘

loss loss




Differential privacy prevents all our attacks.

DP guarantee holds for any

pair of datasets that differ in
any single element
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DP bounds the success of any M| attack.

[Kairouz et al. “15]
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Corollary: Ml attacks can be used to audit privacy.

[Jagielsky et al. ‘20, Nasr et al. "21]
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Example: DP with 98% accuracy on MNIST

3
10 E * Proof-of-concept
; [Shokri & Shmatikov]

Better architectures

* [Papernot et al.]
Tighter analysis *

100 l [Abadi et al.] *

Better features
[T & Boneh]
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Example: DP with 98% accuracy on MNIST
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Example:

Privacy Budget ¢

DP with S8% accuracy on MINIST
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How to verify a privacy claim?

» Check the proof

c(01:k; M1k, 01:(k—1), d, d')
Pr(Mi.x(d; 01:(k—1)) = 01:x]
Pr[M1 k(d';01:(k—1)) = O1:k]
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How to verify a privacy claim?

» Check the code

def process_microbatch(i, sample_state):

"""Process one microbatch (record) with privacy helper."""

microbatch_loss = tf.reduce_mean(
input_tensor=tf.gather(microbatches_losses, [i]))

with gradient_tape.stop_recording():

grads = gradient_tape.gradient(microbatch_loss, var_list)

sample_state = self._dp_sum_query.accumulate_record(
sample_params, sample_state, grads)

return sample_state

for idx in range(self._num_microbatches):
sample_state = process_microbatch(idx, sample_state)

grad_sums, self._global_state, _ = (
self._dp_sum_query.get_noised_result(sample_state,
self._global_state))
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How to verify a privacy claim?

» Launch a Ml attack!
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DP bounds should hold for any data point.

worst-case

Q out-of-distribution

‘ data point

D1=“

Attack goal: guess if DP model was trained on D, or D,



Run the attack 100’000 times...

T et al. “Debugging Differential Privacy: A Case Study for Privacy Auditing”
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Conclusion

» Average-case leakage is a poor metric for privacy!
» We must reevaluate what we “know” about Ml attacks & defenses

» Poisoning can turn average-case inputs into worst-case inputs

» Worst-case Ml attacks are a useful tool for catching DP bugs

https://floriantramer.com florian.tramer@inf.ethz.ch
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