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Machine Learning (ML) Systems

(1) Gather labeled data
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Machine Learning as a Service (MLaaS)

Goal 2: Model Confidentiality

* Model/Data Monetization
* Sensitive Data
| d \
Predlctlon API S TralnlngAPI ]
mput cIa55|f|cat|on
. Black Box

Goal 1: Rich Prediction APIs 488 per quer
* Highly Available — pErauery
* High-Precision Results
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Machine Learning as a Service (MLaaS)

@ PredictionIO Google

Cloud Platform

. sl \icrosoft
blg amazon Wl Azure
web services™
Service Model types
Amazon Logistic regressions
Google ??? (announced: logisticregressions, decisiontrees, neural
networks, SVMs)
Microsoft Logistic regressions, decision trees, neural networks, SVMs

PredictionlO  Logistic regressions, decision trees, SVMs (white-box)

BigML Logistic regressions, decision trees

Sell Datasets— Models— Prediction Queries
SSS to otherusers SSS
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Model Extraction Attacks

Goal: Adversarial client learns close approximation of f using as

few queries as possible Target: f(x) =f'(x) on>99.9% of inputs

f’ Attack X 5 Modelf
N co f(x) :oo D) &

Applications:

1) Undermine pay-for-prediction pricing model
2) Facilitate privacy attacks (

3) Stepping stone to model-evasion
[Lowd, Meek — 2005] [Srndic, Laskov — 2014]
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Model Extraction Attacks (Prior Work)

Goal: Adversarial client learns close approximation of f using as
few queries as possible

Machinell 10 Model f

leamingd ) | €
i v\ :oo ‘

4 e als ats . -

No! Prediction APIs return more [Isn t this “just Machine Learning ?J
informationthan assumed in prior
work and “traditional” ML

J

If f(x) is just a class label: learning with membership queries
- Booleandecision trees [Kushilevitz, Mansour—1993]
- Linear models (e.g., binaryregression) [Lowd, Meek — 2005]
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big @)

f’(x) = f(x) on 100% of inputs
100s-1000’s of online queries

Attack X I\/Iodel f
f(x) r

f’(X)

Inver5|on
Attack .

amazon
webservices™

Logistic Regressions, Neural
Networks, Decision Trees, SVMs
Reverse-engineer model type
& features

Improved Model-Inversion Attacks
[Fredrikson et al. 2015]
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Model Extraction Example: Logistic Regression

Task: Facial Recognition of two people (binary classification)

n+1 parameters w,b chosen
usingtrainingset to Model f
minimize expected error Qo N

f(x) = 1/ (1+e (w+b)

k
f maps features to predicted Feature vectors are pixel data
— %k —
probability of being “Alice” eg, n=92"112 =10,304

< 0.5 classify as “Bob”
> 0.5 classify as “Alice”

Generalizeto ¢ > 2 classes with multinomial logistic regression
f(x) =[py, Py - P predict label as argmax; p;
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Model Extraction Example: Logistic Regression

Goal: Adversarial client learns close approximation of f using as

few queries as possible f(x) = f'(x) on 100% of inputs

Alice 11‘ _
Q% e _{ Attack ]i Model f e?
i W F ‘

Bob i
f (x)

1/ (1+e -(w¥x + b))

f(x
) ) w*x + b < |Linear equationin
1 -1f(x) n+1 unknowns w,b

n(

Query n+1 random points = solve a linear system of n+1 equations
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Generic Equation-Solving Attacks

random inputs X MLaa$S Service outputsY
! X confidence values
o © o© o oo Output M

. [f1<33),f2(37),,fc<$)] € [07 1]C
L/ | Modelf hask

parameters W

e Solve non-linear equationsysteminthe weights W
- Optimizationproblem +gradient descent
- “Noiseless Machine Learning”

 Multinomial Regressions & Deep Neural Networks:
- >99.9% agreement between fand f’
- = 1query per model parameter of f
- 100s - 1,000s of queries/ seconds to minutes
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MLaaS: A Closer Look

amazon

webservices™ Feature Extraction:

(automated and partially documented)

)
@| Training APl |

Model f

| Prediction APl |<

X f(x)
- Classlabelsand confidence scores ML Model Type Selection:
- Supportforpartial inputs logisticor linear regression
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Online Attack: AWS Machine Learning

amazZon
webservices™
input Feature Extraction: | Model Choice: prediction
Quantile Binning + One- Lopistic Re ressi;)n ‘r /
Hot-Encoding - & 5

1

Reverse-engineered with partial “Extract-and-test”
queries and confidence scores

Online Queries Time (s) Price (S)
Handwritten Digits 650 70 0.07

Adult Census 1,485 149 0.15

Extracted model f’ agrees with f on 100% of tested inputs
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Application: Model-Inversion Attacks

Infer training data from trained models [Fredrikson et al. — 2015]

Attack recoversimage , Trainingsamples
of one individual White-Box Attack of 40 individuals
v

Inversion ]i» f;{Extraction a Multinomia} @ W &
Attack ) Attack LR Model f | N’ | B
(x) T f(x) A 7

—

f(x) = f'(x) for
>99.9% of inputs

Strategy Attack against 1 individual  Attack againstall 40 individuals

Online Queries Attack Time Online Queries Attack Time

Black-Box Inversion

[Fredrikson et al.] 20,600 24 min £540% 800,000 16 hours
Extract-and-Invert 41,000 — r)(l\ 11,000 10 houre

(our work)
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Extracting a Decision Tree

X

Confidence value derived from class
distributionin thetrainingset

Kushilevitz-Mansour (1992)

* Poly-timealgorithm with membership queries only
 OnlyforBoolean trees, impractical complexity

(Ab)using Confidence Values

 Assumption:all tree leaves have unique confidence values
 Reconstructtree decisions with “differential testing”
* Online attacks on BigML

N
Inputs x and x’ differ Different leaves are reached
in a single feature X X’ &

Tree “splits” on this feature )
Y v’
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Countermeasures

How to prevent extraction?

APl Minimization

f(X)=v\

Prediction

Queries

* Prediction=class label only
e Learning with Membership

Attack on Linear Classifiers [Lowd,Meek — 2005]

classify as “+” if w*x+b >0
and “-” otherwise

n+1 parameters w,b

\7 N7
= f(x) = sign(w*x + b)

1. Find pointsondecision boundary (w*x+ b = 0)

o n

- Finda “+4” and a

- Line search between the two points
2. Reconstructw andb (up to scalingfactor)

decision
7 boundary
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Generic Model Retraining Attacks

Extend the Lowd-Meek approach to non-linear models

Active Learning:

- Query pointsclose to “decision boundary”
- Updatef’ to fit these points

* Multinomial Regressions, Neural Networks, SVMs:
- >99% agreement between fand f’
- =100 queries per model parameter of f

; ~ 100x less efficient
=y than equation-solving

e ==

— \
L | query more

points here
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Conclusion

Rich prediction APIs X Model & data confidentiality

Efficient Model-Extraction Attacks

* Logistic Regressions, Neural Networks, Decision Trees, SVMs
 Reverse-engineering of model type, feature extractors
e Active learningattacksin membership-query setting

Applications

e Sidestep model monetization
 Boostotherattacks: privacy breaches, model evasion

Thanks! Find out more: https://github.com/ftramer/Steal-ML @
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