
Slalom:
Fast, Verifiable and Private Execution of
Neural Networks in Trusted Hardware

Florian Tramèr
(joint work with Dan Boneh)

Stanford security lunch – June 13th

Trusted execution of ML: 3 motivating scenarios
1. Outsourced ML

Data Privacy

Integrity
- Model “downgrade”
- Disparate impact
- Other malicious tampering

Trusted execution of ML: 3 motivating scenarios
2. Federated Learning

Integrity
Need integrity of
computation and data
collectionData privacy

Integrity
- Malware
- Trojaned hardware

Trusted execution of ML: 3 motivating scenarios
3. Infected Hosts

Solutions
• Cryptography

1. Outsourced ML: FHE, MPC, (ZK) proof systems
2. Federated learning: no countermeasure for poisoning…
3. Infected hosts: verifiable computation + some root of trust

• Trusted Execution Environments (TEEs)
1. Outsourced ML: isolated enclaves
2. Federated learning: trusted sensors + isolated enclaves
3. Infected hosts: isolated enclaves / hardware from trusted

manufacturer

Trusted Execution: At what cost?
• Trusted ASICs (Wahby et al.): ~108�worse than SOTA
• Intel SGX:

https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a

350

1
0

50
100
150
200
250
300
350
400

GPU SGX

Im
ag

es
 /

se
c

VGG16 Inference

GPU: Nvidia TITAN XP
SGX: Intel Core i7-6700 Skylake Single Core @ 3.40GHz

Paging at
~90MB

“How do we efficiently leverage TEEs for secure
machine learning computations?”

Idea: outsource work to collocated, faster but untrusted
device and verify results

Computations Required gap Privacy
Verifiable ASICs
(Wahby et al., 2016)

Arithmetic circuits ~ 8 orders of
magnitude

No

Slalom DNN inference ~ 1-2 orders “Yes”

x

F(x), proof
TEE

TEE

Goal + threat model

User has secure
communication

channel with TEE

Adversary controls the rest of
the software / hardware stack

The model is known to the adversary
(but not necessarily to the client)

Goal: Efficiently run DNN inference F(x)
- Integrity: User obtains F(x) or aborts
- Privacy: Adversary learns nothing about x

Bottlenecks in deep neural networks

VGG16 Inference on 1 CPU core

MATRIX MULTIPLICATION

non linear stuff (cheap)

~ 97%

Outsourcing matrix multiplication: Freivald’s algorithm

Input: X ∈ "n ⨉ n , W ∈ "n ⨉ n

Direct Compute: Z = X * W
≈ n3 multiplications or O(n2.81) with Strassen

Outsource + Verify:
• Sample r ← "n uniformly at random
• Check: Z*r = X * (W * r)
• Complexity: ≈ 3n2 multiplications
• Soundness: 1 / | " | (boost by repeating)

DNN weights. Fixed at
inference time

Batched and preprocessed verification

Some DNN layers are *not* matrix multiplications
E.g., a dense layer is a vector-matrix product, x*W

- Compute: ≈ n2

- Freivald: ≈ 3n2 ...

Verify a batch of inputs: Z = [x1, x2, …, xB] * W
- Compute: ≈ Bn2

- Freivald: ≈ Bn + 2n2

Preprocess learned weights: W’ = W*r
- Freivald: ≈ Bn + n2

The same randomness r can
be reused for multiple checks

if r is kept secret from the
adversary

Handling convolutions

Operation Multiplications
Compute Z = im2col([x1, …, xB]) * W B*N*K2*C*D

Batched verify r1 * Z * r2 = im2col(r1 * X) * (W * r2) B*N*D + B*N*C +
K2*C*D + N*K2*C

Savings even if B=1Soundness: 2 / | ! |

VGG16
• K = 3
• 3 ≤ C ≤ 512
• 64 ≤ D ≤ 512
• 142 ≤ N ≤ 2242

Preprocessing for convolutions (or arbitrary linear ops)
Linear operator: z = FA(x) = x * A

Precompute: A’ = A * r = (∇x F)(r)
Check: z * r = x * A’
Complexity: |z| + |x| multiplications

Vector of size |z| Vector of size |x|

Matrix of size |x| × |z|

Convolutions Multiplications
Compute B*N*K2*C*D
Batched verify B*N*D + B*N*C + K2*C*D + N*K2*C
Preprocessed B*N*D + B*N*C

2 inner products!

|x| = B*N*C
|z| = B*N*D

Easy to compute without
making A explicit!

Preserving privacy
• Offline precomputation + online blinding

X

X * W
TEE

Offline: Precompute and store R, R*W

Preserving privacy
• Offline precomputation + online blinding

• Secret sharing?

X+R

(X+R) * W
TEE

Online: “one-time-pad” over !

TEE X+R

R

Can these devices be
“collocated” yet

“non-colluding” ?

Online: Unblind using R*W

Offline: Precompute and store R, R*W

Slalom

X1 Z1 X2 Z2

W1 W2σ σ

…F:

TEE TEE

Slalom (some details)

Quantization:

• DNNs are typically trained / evaluated in floating point

• Freivald / blinding require working over a ring/field !
• Quantize inputs & weights and work mod P (P < 224)

Integrity checks:
• Eval DNN on fast device and store inputs/outputs of all linear ops

⟹ close to no prover overhead
• Sample r from ! and do Freivald check in double precision

⟹ verifier complexity is at least |x| + |z| double muls per linear layer

Blinding:

• Store unblinding factors R*W encrypted in untrusted memory
• In online phase, decrypt (and authenticate) R*W to unblind

Design & Evaluation
Implementation

• TEE: Intel SGX ”Desktop” CPU (single thread)
• Untrusted device: Nvidia Tesla GPU
• Port of the Eigen linear algebra C++ library to SGX

(used in e.g., TensorFlow)

Workloads:
• Microbenchmarks (see paper)
• VGG16 (“beefy” canonical feedforward neural network)
• MobileNet (resource efficient DNN tailored for low-compute devices)

• Variant 1: standard MobileNet (see paper)
• Variant 2: No intermediate ReLU in separable convolutions (this talk)

TEE

Verifiable inference

1 1.7

19.6

0

5

10

15

20

25

Compute Verify Verify with

preproc

Im
a

g
e

s
 /

 s
e

c

VGG16

15.9

30

97.1

0

20

40

60

80

100

120

Compute Verify Verify with

preproc

MobileNet

VGG16 weights take 500MB

so SGX has to page weights

in and out of memory

=> ~2-3x slowdown

Preprocessed weights W*r

take up less memory and

enable faster checks!

MobileNet’s weights are

only ~10MB so they fit in

the SGX cache

Difficult to get faster

batched verification due to

SGX memory limits

Verifiable and private inference

1

19.6

13
10.2

0

5

10

15

20

25

C
om

pu
te

O
ut

so
ur

ce
+I

nt
eg

rit
y

O
ut

so
ur

ce
+p

riv
ac

y

O
ut

so
ur

ce
+b

ot
h

Im
a

g
e

s
 /

 s
e

c

VGG16

15.9

97.1
80

54.9

0
20
40
60
80

100
120

C
om

pu
te

O
ut

so
ur

ce
+i

nt
eg

rit
y

O
ut

so
ur

ce
+p

riv
ac

y

O
ut

so
ur

ce
+b

ot
h

MobileNet

Extra Costs
- GPU has to operate in double precision
- Decrypt all unblinding factors R*W (AES-GCM)
- Regenerate all blinding factors R (PRG using AES)

Summary

• Large savings (6x – 20x) in outsourcing DNN
inference while preserving integrity
• Sufficient for some use-cases!

• More modest savings (3.5x – 10x) with input privacy
• Requires preprocessing

Open questions
• What other problems are (concretely) easier to verify

than to compute?
• All NP complete problems (are those really outsourced?)
• What about something in P?

• Convex optimization
• Other uses of matrix multiplication
• Many graph problems (e.g., perfect matching)

• What about Slalom for verifiable / private training?
• Quantization at training time is hard
• Weights change so we can’t preprocess W*r for Freivald’s check
• We assume the model is public

