Slalom:
Fast, Verifiable and Private Execution of
Neural Networks Iin Trusted Hardware

Florian Tramer
(joint work with Dan Boneh)

Stanford security lunch — June 13t

Stanford University

Trusted execution of ML: 3 motivating scenarios

1. Outsourced ML

Data Privacy

Integrity

- Disparate impact

- Other malicious tampering

- Model “downgrade”

Stanford University

Trusted execution of ML: 3 motivating scenarios

2. Federated Learning

Integrity
@) Need integrity of

N computation and data
collection

Data privacy }

Stanford University

Trusted execution of ML: 3 motivating scenarios

3. Infected Hosts

Integrity
- Malware
- Trojaned hardware

Stanford University

Solutions

« Cryptography

1.
2.
3.

Outsourced ML: FHE, MPC, (ZK) proof systems
Federated learning: no countermeasure for poisoning...
Infected hosts: verifiable computation + some root of trust

* Trusted Execution Environments (TEES)

1.
2.
3.

Outsourced ML.: isolated enclaves
Federated learning: trusted sensors + isolated enclaves

Infected hosts: isolated enclaves / hardware from trusted
manufacturer

Stanford University

Trusted Execution: At what cost?

« Trusted ASICs (Wahby et al.): ~108 X worse than SOTA
* Intel SGX:

VGG16 Inference

Figure 1:find_max Throughput

400
00 350
00 350
oo T TN T e gy 300
o : Pagingat & 250
5000 ,/«/ (7))
= . ""’90 M B ;
B 8 200
- ® 150
200 §
100 1 OO
0 50
1KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB 256MB 1
Array size 0
=g untrusted - standard implement &ion GP U SGX
—g—trusted - accessing enclave's local memory
trusted - accessing © ear»j:ext memory ('user-check' opt cn:n . . GPU NVIdla TITAN XP

trusted - copy to enclave's local memory and accessing & ('n’ option)

SGX: Intel Core i7-6700 Skylake Single Core @ 3.40GHz
https://medium.com/@danny_harnik/impressions-of-intel-sgx-performance-22442093595a

Stanford University

“How do we efficiently leverage TEEs for secure
machine learning computations?”

Idea: outsource work to collocated, faster but untrusted
device and verify results

IIIIIIIIIIIIIIII
IIIIIIIIIIIIIII
||||||||||||||||
llllllllllllllll

TEE E X =

@ ‘ F(x), proof

................
IIIIIIIIIIIIIII
||||||||||||||||
lllllllllllllll

Verifiable ASICs Arithmetic circuits ~ 8 orders of
(Wahby et al., 2016) magnitude
Slalom DNN inference ~ 1-2 orders “Yes”

Stanford University

Goal + threat model

The model is known to the adversary
Adversary controls the rest of (but not necessarily to the client)
the software / hardware stack

|||||||||||||||

llllllllllllllll
lllllllllllllll

llllllllllllllllll

User has secure
communication
channel with TEE

Goal: Efficiently run DNN inference F(x)
- Integrity: User obtains F(x) or aborts
- Privacy: Adversary learns nothing about x

Stanford University

Bottlenecks in deep neural networks

\ 4

non linear stuff (cheap)

-
<
<
<

a

o

Fully Connected Layer

-

\ 4

MATRIX MULTIPLICATION

Wall Duration ¥V

VGG16 Inference on 1 CPU core

0.006 ms
0.016 ms

0.004 ms a
0.077 ms ~97%
0.034 ms

372.828 ms
5.637 ms
2.924 ms
2.495 ms

384.021 ms

Stanford University

Outsourcing matrix multiplication: Freivald’s algorithm

Input: XeFnxXn Welnxn

DNN weights. Fixed at
inference time

Direct Compute: Z=X*W
~ n3 multiplications or o(2#') witn strassen

Outsource + Verify:
« Sample r — " uniformly at random
* Check: Z r=X*(W *r)
« Complexity: = 3nZ2multiplications
« Soundness: 1/|F| (boostby repeating)

Stanford University

Batched and preprocessed verification

Some DNN layers are *not* matrix multiplications
E.g., a dense layer is a vector-matrix product, x*W
- Compute: =n?
- Freivald: ~ 3n2...

Verify a batch of inputs: Z = [x4, X5, ..., Xg] * W
- Compute: =Bn?

- Freivald: ~ The same randomness r can
be reused for multiple checks
if ris kept secret from the
Preprocess learned weights: W' = W*r adver=dll
- Freivald: ~ Bn + n?

Stanford University

: . VGG16
Handling convolutions s
+ 3=<C=<512
. . o e 64=<D=<b512
Implementing Convolutions: im2col . 142 <N < 2242
Feature map: Hx W x C Conv weights: D filters, each Kx Kx C
= (A \
E (P e F
———
—] —m
% Matrix multiply
(K2C) x N matrix D x (K°C) matrix resha[E:a)ftoNoruet;lljjltttensor
_ Operation Multiplications
Compute Z = im2col([x1, ..., xg]) * W B*N*K2*C*D

Batched verify r;*Z*r, =im2col(r;* X) * (W *rp) B*N*D + B*N*C +
K2*C*D + N*K2*C

Soundness: 2/ | F | Savings even if B=1

Stanford University

Preprocessing for convolutions (or arbitrary linear ops)

Linear operator: Z=Fp(X)=x*A Matrix of size || % |z| |
Vector of size |z| | Vector of size |X| |
. ’ —_ Easy to compute without
PreCOmpUte. A=A"r= (VX F)(r) making A explicit!
. * .= * A’
CheCk' Z Ir=Xx A 2 inner products! |
Complexity: |z| + |x| multiplications

=BG
i ’ Compute B*N*K2*C*D
Batched verify B*N*D + B*N*C + K2*C*D + N*K2*C
Preprocessed B*N*D + B*N*C

Stanford University

Preserving privacy

« Offline precomputation + online blinding

Offline: Precompute and store R, R*W |

|||||||||||||||
IIIIIIIIIIIIIIII
llllllllllllllll

@; - X*W
i:: ¢ T T

.............
IIIIIIIIIIIIIIII
IIIIIIIIIIIIIII
llllllllllllllll

Stanford University

Preserving privacy

« Offline precomputation + online blinding

Offline: Precompute and store R, R*W | Online: “one-time-pad” over F |

lllllllllllllll
IIIIIIIIIIIIIIII
||||||||||||||||

| i i i i i ———

Online: Unblind using R*W

* Secret sharing?

llllllllllllllll

IIIIIIIIIIIIIII ; >
IIIIIIIIIIIIIIII
lllllllllllll I
11 11
11 1
T | - |
| - 1
L1 11
1 1
1 1

Can these devices be
“collocated” yet
“non-colluding” ?

||||||||||||||
IIIIIIIIIIIIIII

IIIIIIIIIIIIIIII
lllllllllllllll

Stanford University

Slalom

1 1 1 1 1 1 [1 1 1 1 1 1 1 | 1
| NN NN N N N N N - | NN N N N N N S -

TEE g TEE %

':'.'.'.'.'.'.'.': SlalomWithintegrity I:l:l:l:l:l:l:l'l: S]alomwithprivacy
Pr(Xi, F) Py (X1, F) precomputed: R\ W1,..., R, W,
fori=1...ndo Pr(X1, F) Pu(F)

Z; = X;W;
Z1...Zn Xi+1 = O'(Zz)

fori=1...ndo

X; =X + R; =5,
F—————— === A 3
| Freivald(Z;, X;, W;) | —

LI P | Z; =4Z; — R;W;

| assert Z;r=X;(W;r) I Freivald(Z;, X;, W;)
b - Xit1 =0o(Z;)

X’L+1 - O'(Zz)

return 7,

Stanford University

Slalom (some details)

Quantization:

* DNNs are typically trained / evaluated in floating point
* Freivald / blinding require working over a ring/field F
* Quantize inputs & weights and work mod P (P < 224)

Integrity checks:
« Eval DNN on fast device and store inputs/outputs of all linear ops
= close to no prover overhead
« Sample r from F and do Freivald check in double precision
— verifier complexity is at least |x| + |z| double muls per linear layer

Blinding:

« Store unblinding factors R*W encrypted in untrusted memory
* In online phase, decrypt (and authenticate) R*W to unblind

Stanford University

Design & Evaluation

Implementation

« TEE: Intel SGX "Desktop” CPU (single thread)
 Untrusted device: Nvidia Tesla GPU

« Port of the Eigen linear algebra C++ library to SGX
(used in e.g., TensorFlow)

Workloads:

« Microbenchmarks (see paper)
« VGG16 (“beefy” canonical feedforward neural network)
* MobileNet (resource efficient DNN tailored for low-compute devices)
« Variant 1: standard MobileNet (see paper)
« Variant 2: No intermediate RelLU in separable convolutions (this talk)

Stanford University

Verifiable inference

MobileNet’s weights are
only ~10MB so they fit in

the SGX cache
VGG16 MobileNet
25 120
97.1
20 19.6 100
@ 80
215
§ o 60
C_EU 40 s 30
5 :
1 1.7 20 .
D e ,
Compute Verify Verify with Compute Verify Verify with
preproc preproc
VGG16 weights take 500MB Difficult to get faster
so SGX has to page weights Preprocessed weights W*r batched verification due to
in and out of memory take up less memory and SGX memory limits
=> ~2-3x slowdown enable faster checks!

Stanford University

Verifiable and private inference

VGG16 MobileNet
o 22 19.6 120 97.1
® 20 100 80
- 13 80
o 19 10.2 50 54.9
> 10 40
e 5 1 15.9
£ 20
0 — 0 -
@ A A & @ & A S
PO & < & & & <
ox X R & o o L &
& © o & & o
> 600 o‘-:’@ & @O\) O&6
9 N\ 9
> o> o S

Extra Costs
- GPU has to operate in double precision
- Decrypt all unblinding factors R*W (AES-GCM)
- Regenerate all blinding factors R (PRG using AES)

Stanford University

Summary

« Large savings (6x — 20x) in outsourcing DNN

inference while preserving integrity
« Sufficient for some use-cases!

* More modest savings (3.5x — 10x) with input privacy
« Requires preprocessing

Stanford University

Open questions

« What other problems are (concretely) easier to verify
than to compute?
« All NP complete problems (are those really outsourced?)
« What about something in P?
» Convex optimization
» Other uses of matrix multiplication
« Many graph problems (e.g., perfect matching)

« What about Slalom for verifiable / private training?
« Quantization at training time is hard

« Weights change so we can’t preprocess W*r for Freivald’'s check
« We assume the model is public

Stanford University

