Measuring privacy leakage
in neural networks

Florian Tramer



Neural networks learn from a (private) training set.




The trained model might /eak the training set.
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This talk: Membership inference attacks

Was
in the
training set?




Why should we care about membership inference?

1. Areal attack (e.g., models trained on medical data)
2. An attack component (e.g., for data extraction)

3. Asimple, formal upper-bound on data leakage

Data privacy Secure encryption
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Membership inference attack Chosen plaintext attack



Outline.

» Most membership attacks (and their evaluations) are flawed
» A new principled attack that works on outliers
» A new stronger attack that works for any input

» Defenses and how to audit them



Models are trained to minimize loss.

minimize loss Loss is (slightly) lower for

training examples!



A simple MI attack: “uniform” loss thresholding

[Yeom et al.’18]
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A simple MI attack: “uniform” loss thresholding

[Yeom et al/18]
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A model’s loss leaks membership on average.
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A model’s loss leaks membership on average.
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“Uniform” loss thresholding doesn’t confidently
infer membership of any member of the train set!
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Our preferred evaluation methodology: low FPRs
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LIRA: A better MI attack!

Carlini et al., “Membership Inference Attacks From First Principles”, IEEE S&P 22

>1000x better in
the worst case
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Insight: not all examples are equally “hard”

[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]
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Insight: not all examples are equally “hard”

[Sablayrolles et al.’19, Long et al.’20, Feldman & Zhang’20, Watson et al.’21, Ye et al.’21]

Which is a
member?

ase1 25050 WETEVASHE

loss: 104 x
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Let’s try a membership inference attack!




loss

L

Ining se

Tra




L

Ining se

Tra

loss




loss

L

Ining se

Tra




L

Ining se

Tra

loss




Membership inference as a likelihood test.

I models trained on image
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Membership inference as a likelihood test.

I models trained on image

models not trained on image

loss
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achieve a FPR of
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Let’s try again!

n2o {¥ 2 Follow
1evilidiot

Her.- do you have a dog or a cat?
me.- | don't know.

14581 25650 WETEVASHE
2:52 PM - 4 Nov 2016
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Some examples are easier to distinguish.
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Membership inference with per-example likelihood
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Membership inference works well on “outliers”.
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Next: a new attack that works on any example!

. Membership Inference on CIFAR-10
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l[dea: use data poisoning

Yann LeCun and Yoshua Bengio:
Self-supervised learning is the

key to human-level intelligence

Dataset # English Img-Txt Pairs
Public Datasets
MS-COCO 330K
CC3M 3M

Visual Genome 5.4M
WIT 5.5M
CC12M 12M
RedCaps 12M
YFCC100M 100M?
LAION-5B (Ours) 2.3B
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A new threat model: privacy poisoning

Tramer et al. “Truth Serum: Poisoning Machine Learning Models to Reveal Their Secrets”, CCS '22

~

Leak private data
from other users

Model training
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Poison the training set
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Data poisoning can create “fake” outliers.
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Training set
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Training set
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Training set
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How to defend against membership leakage?
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Differential privacy prevents all our attacks.

DP guarantee holds for any
pair of datasets that differ in
any single element
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DP bounds the success of any M| attack.

[Kairouz et al. ‘15]
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Corollary: Ml attacks can be used to audit privacy.

[Jagielsky et al. 20, Nasr et al. "21]
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Example: DP with 98% accuracy on MNIST

3
10 E * Proof-of-concept
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* [Papernot et al.]
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100 l [Abadi et al.] *
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Example: DP with 98% accuracy on MNIST
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Example:

Privacy Budget ¢

DP with S8% accuracy on MINIST
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How to verify a DP claim?

» Check the proof
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How to verify a DP claim?

» Check the code

def process_microbatch(i, sample_state):

"""Process one microbatch (record) with privacy helper."""

microbatch_loss = tf.reduce_mean(
input_tensor=tf.gather(microbatches_losses, [i]))

with gradient_tape.stop_recording():

grads = gradient_tape.gradient(microbatch_loss, var_list)

sample_state = self._dp_sum_query.accumulate_record(
sample_params, sample_state, grads)

return sample_state

for idx in range(self._num_microbatches):
sample_state = process_microbatch(idx, sample_state)

grad_sums, self._global_state, _ = (
self._dp_sum_query.get_noised_result(sample_state,
self._global_state))
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How to verify a DP claim?

> Launch an attack!
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DP bounds should hold for any data point.

D, - " A
D, -

Attack goal: guess if is @ member of the training set

data point




Run the attack 100’000 times...

Tramer et al. “Debugging Differential Privacy: A Case Study for Privacy Auditing”, 2022

—== Threshold

3.0% -
o Train on Dy
2 5o - Train on D,
' 1
oy |
n I
S 2.0% - :
Q |
by !
= 1.5% - '
O
© |
S |
a 1.0% A '
0.5% -
0.0%
2

Model loss on

4

6

TPR
et > ——
FPR

a N

> 2.7

9 (claim was € = 0.08) )

54



Conclusion

» Average-case leakage is a poor metric for privacy!
» We must reevaluate what we “know” about Ml attacks & defenses

» Poisoning can turn average-case inputs into worst-case inputs

» Worst-case Ml attacks are a useful tool for catching DP bugs
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