Differentially Private Learning Needs Better Features (or Much More Data)

Florian Tramèr and Dan Boneh

International Conference on Learning Representations (ICLR), 2021.
Spotlight Presentation.


Links


Abstract

We demonstrate that differentially private machine learning has not yet reached its "AlexNet moment" on many canonical vision tasks: linear models trained on handcrafted features significantly outperform end-to-end deep neural networks for moderate privacy budgets. To exceed the performance of handcrafted features, we show that private learning requires either much more private data, or access to features learned on public data from a similar domain. Our work introduces simple yet strong baselines for differentially private learning that can inform the evaluation of future progress in this area.


BibTeX
@inproceedings{TB21,
  author   =   {Tram{\`e}r, Florian and Boneh, Dan},
  title   =   {Differentially Private Learning Needs Better Features (or Much More Data)},
  booktitle   =   {International Conference on Learning Representations (ICLR)},
  year   =   {2021},
  howpublished   =   {arXiv preprint arXiv:2011.11660},
  url   =   {https://arxiv.org/abs/2011.11660}
}